Greenhouse production of fruits and vegetables in developed countries is challenged by labor 12 scarcity and high labor costs. Robots offer a good solution for sustainable and cost-effective 13 production. Acquiring accurate spatial information about relevant plant parts is vital for 14 successful robot operation. Robot perception in greenhouses is challenging due to variations in 15 plant appearance, viewpoints, and illumination. This paper proposes a keypoint-detection-based 16 method using data from an RGB-D camera to estimate the 3D pose of peduncle nodes, which 17 provides essential information to harvest the tomato bunches. 18 19 Specifically, this paper proposes a method that detects four anatomical landmarks in the color 20 image and then integrates 3D point-cloud information to determine the 3D pose. A 21 comprehensive evaluation was conducted in a commercial greenhouse to gain insight into the 22 performance of different parts of the method. The results showed: (1) high accuracy in object 23 detection, achieving an Average Precision (AP) of AP@0.5=0.96; (2) an average Percentage of 24 Detected Joints (PDJ) of the keypoints of PhDJ@0.2=94.31%; and (3) 3D pose estimation 25 accuracy with mean absolute errors (MAE) of 11.38o and 9.93o for the relative upper and lower 26 angles between the peduncle and main stem, respectively. Furthermore, the capability to handle 27 variations in viewpoint was investigated, demonstrating the method was robust to view changes. 28 However, canonical and higher views resulted in slightly higher performance compared to other 29 views. Although tomato was selected as a use case, the proposed method is also applicable to 30 other greenhouse crops like pepper.
On the journey to enable robots to interact with the real world where humans, animals, and unpredictable elements are acting as independent agents; it is crucial for robots to have the capability to detect dynamic objects. In this paper, we argue that the detection of dynamic objects can be solved by computing the spatiotemporal normals of a point cloud. In our experiments, we demonstrate that this simple method can be used robustly for LiDAR and depth cameras with performances similar to the state of the art while offering a significantly simpler method.
In the incremental detection task, unlike the incremental classification task, data ambiguity exists due to the possibility of an image having different labeled bounding boxes in multiple continuous learning stages. This phenomenon often impairs the model's ability to learn new classes. However, the forward compatibility of the model is less considered in existing work, which hinders the model's suitability for incremental learning. To overcome this obstacle, we propose to use a language-visual model such as CLIP to generate text feature embeddings for different class sets, which enhances the feature space globally. We then employ the broad classes to replace the unavailable novel classes in the early learning stage to simulate the actual incremental scenario. Finally, we use the CLIP image encoder to identify potential objects in the proposals, which are classified into the background by the model. We modify the background labels of those proposals to known classes and add the boxes to the training set to alleviate the problem of data ambiguity. We evaluate our approach on various incremental learning settings on the PASCAL VOC 2007 dataset, and our approach outperforms state-of-the-art methods, particularly for the new classes.
This paper introduces the Budding Ensemble Architecture (BEA), a novel reduced ensemble architecture for anchor-based object detection models. Object detection models are crucial in vision-based tasks, particularly in autonomous systems. They should provide precise bounding box detections while also calibrating their predicted confidence scores, leading to higher-quality uncertainty estimates. However, current models may make erroneous decisions due to false positives receiving high scores or true positives being discarded due to low scores. BEA aims to address these issues. The proposed loss functions in BEA improve the confidence score calibration and lower the uncertainty error, which results in a better distinction of true and false positives and, eventually, higher accuracy of the object detection models. Both Base-YOLOv3 and SSD models were enhanced using the BEA method and its proposed loss functions. The BEA on Base-YOLOv3 trained on the KITTI dataset results in a 6% and 3.7% increase in mAP and AP50, respectively. Utilizing a well-balanced uncertainty estimation threshold to discard samples in real-time even leads to a 9.6% higher AP50 than its base model. This is attributed to a 40% increase in the area under the AP50-based retention curve used to measure the quality of calibration of confidence scores. Furthermore, BEA-YOLOV3 trained on KITTI provides superior out-of-distribution detection on Citypersons, BDD100K, and COCO datasets compared to the ensembles and vanilla models of YOLOv3 and Gaussian-YOLOv3.
Traffic signs are important facilities to ensure traffic safety and smooth flow, but may be damaged due to many reasons, which poses a great safety hazard. Therefore, it is important to study a method to detect damaged traffic signs. Existing object detection techniques for damaged traffic signs are still absent. Since damaged traffic signs are closer in appearance to normal ones, it is difficult to capture the detailed local damage features of damaged traffic signs using traditional object detection methods. In this paper, we propose an improved object detection method based on YOLOv5s, namely MFL-YOLO (Mutual Feature Levels Loss enhanced YOLO). We designed a simple cross-level loss function so that each level of the model has its own role, which is beneficial for the model to be able to learn more diverse features and improve the fine granularity. The method can be applied as a plug-and-play module and it does not increase the structural complexity or the computational complexity while improving the accuracy. We also replaced the traditional convolution and CSP with the GSConv and VoVGSCSP in the neck of YOLOv5s to reduce the scale and computational complexity. Compared with YOLOv5s, our MFL-YOLO improves 4.3 and 5.1 in F1 scores and mAP, while reducing the FLOPs by 8.9%. The Grad-CAM heat map visualization shows that our model can better focus on the local details of the damaged traffic signs. In addition, we also conducted experiments on CCTSDB2021 and TT100K to further validate the generalization of our model.
Multi-view aggregation promises to overcome the occlusion and missed detection challenge in multi-object detection and tracking. Recent approaches in multi-view detection and 3D object detection made a huge performance leap by projecting all views to the ground plane and performing the detection in the Bird's Eye View (BEV). In this paper, we investigate if tracking in the BEV can also bring the next performance breakthrough in Multi-Target Multi-Camera (MTMC) tracking. Most current approaches in multi-view tracking perform the detection and tracking task in each view and use graph-based approaches to perform the association of the pedestrian across each view. This spatial association is already solved by detecting each pedestrian once in the BEV, leaving only the problem of temporal association. For the temporal association, we show how to learn strong Re-Identification (re-ID) features for each detection. The results show that early-fusion in the BEV achieves high accuracy for both detection and tracking. EarlyBird outperforms the state-of-the-art methods and improves the current state-of-the-art on Wildtrack by +4.6 MOTA and +5.6 IDF1.
We introduce Dynamic Tiling, a model-agnostic, adaptive, and scalable approach for small object detection, anchored in our inference-data-centric philosophy. Dynamic Tiling starts with non-overlapping tiles for initial detections and utilizes dynamic overlapping rates along with a tile minimizer. This dual approach effectively resolves fragmented objects, improves detection accuracy, and minimizes computational overhead by reducing the number of forward passes through the object detection model. Adaptable to a variety of operational environments, our method negates the need for laborious recalibration. Additionally, our large-small filtering mechanism boosts the detection quality across a range of object sizes. Overall, Dynamic Tiling outperforms existing model-agnostic uniform cropping methods, setting new benchmarks for efficiency and accuracy.
Robust 3D object detection in extreme weather and illumination conditions is a challenging task. While radars and thermal cameras are known for their resilience to these conditions, few studies have been conducted on radar-thermal fusion due to the lack of corresponding datasets. To address this gap, we first present a new multi-modal dataset called ThermRad, which includes a 3D LiDAR, a 4D radar, an RGB camera and a thermal camera. This dataset is unique because it includes data from all four sensors in extreme weather conditions, providing a valuable resource for future research in this area. To validate the robustness of 4D radars and thermal cameras for 3D object detection in challenging weather conditions, we propose a new multi-modal fusion method called RTDF-RCNN, which leverages the complementary strengths of 4D radars and thermal cameras to boost object detection performance. To further prove the effectiveness of our proposed framework, we re-implement state-of-the-art (SOTA) 3D detectors on our dataset as benchmarks for evaluation. Our method achieves significant enhancements in detecting cars, pedestrians, and cyclists, with improvements of over 7.98%, 24.27%, and 27.15%, respectively, while achieving comparable results to LiDAR-based approaches. Our contributions in both the ThermRad dataset and the new multi-modal fusion method provide a new approach to robust 3D object detection in adverse weather and illumination conditions. The ThermRad dataset will be released.
This paper considers the problem of detecting and tracking objects in a sequence of images. The problem is formulated in a filtering framework, using the output of object-detection algorithms as measurements. An extension to the filtering formulation is proposed that incorporates class information from the previous frame to robustify the classification, even if the object-detection algorithm outputs an incorrect prediction. Further, the properties of the object-detection algorithm are exploited to quantify the uncertainty of the bounding box detection in each frame. The complete filtering method is evaluated on camera trap images of the four large Swedish carnivores, bear, lynx, wolf, and wolverine. The experiments show that the class tracking formulation leads to a more robust classification.
3D object detection is an essential task for achieving autonomous driving. Existing anchor-based detection methods rely on empirical heuristics setting of anchors, which makes the algorithms lack elegance. In recent years, we have witnessed the rise of several generative models, among which diffusion models show great potential for learning the transformation of two distributions. Our proposed Diff3Det migrates the diffusion model to proposal generation for 3D object detection by considering the detection boxes as generative targets. During training, the object boxes diffuse from the ground truth boxes to the Gaussian distribution, and the decoder learns to reverse this noise process. In the inference stage, the model progressively refines a set of random boxes to the prediction results. We provide detailed experiments on the KITTI benchmark and achieve promising performance compared to classical anchor-based 3D detection methods.