Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

Mar 20, 2020
Jakaria Rabbi, Nilanjan Ray, Matthias Schubert, Subir Chowdhury, Dennis Chao

The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for the small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and used different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the GAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on car overhead with context and oil and gas storage tank (created by us) data sets show superior performance of our method compared to the standalone state-of-the-art object detectors.

* This paper contains 25 pages and submitted to MDPI remote sensing journal (under review) 

Action-Driven Object Detection with Top-Down Visual Attentions

Dec 20, 2016
Donggeun Yoo, Sunggyun Park, Kyunghyun Paeng, Joon-Young Lee, In So Kweon

A dominant paradigm for deep learning based object detection relies on a "bottom-up" approach using "passive" scoring of class agnostic proposals. These approaches are efficient but lack of holistic analysis of scene-level context. In this paper, we present an "action-driven" detection mechanism using our "top-down" visual attention model. We localize an object by taking sequential actions that the attention model provides. The attention model conditioned with an image region provides required actions to get closer toward a target object. An action at each time step is weak itself but an ensemble of the sequential actions makes a bounding-box accurately converge to a target object boundary. This attention model we call AttentionNet is composed of a convolutional neural network. During our whole detection procedure, we only utilize the actions from a single AttentionNet without any modules for object proposals nor post bounding-box regression. We evaluate our top-down detection mechanism over the PASCAL VOC series and ILSVRC CLS-LOC dataset, and achieve state-of-the-art performances compared to the major bottom-up detection methods. In particular, our detection mechanism shows a strong advantage in elaborate localization by outperforming Faster R-CNN with a margin of +7.1% over PASCAL VOC 2007 when we increase the IoU threshold for positive detection to 0.7.


Decoupling Object Detection from Human-Object Interaction Recognition

Dec 13, 2021
Ying Jin, Yinpeng Chen, Lijuan Wang, Jianfeng Wang, Pei Yu, Lin Liang, Jenq-Neng Hwang, Zicheng Liu

We propose DEFR, a DEtection-FRee method to recognize Human-Object Interactions (HOI) at image level without using object location or human pose. This is challenging as the detector is an integral part of existing methods. In this paper, we propose two findings to boost the performance of the detection-free approach, which significantly outperforms the detection-assisted state of the arts. Firstly, we find it crucial to effectively leverage the semantic correlations among HOI classes. Remarkable gain can be achieved by using language embeddings of HOI labels to initialize the linear classifier, which encodes the structure of HOIs to guide training. Further, we propose Log-Sum-Exp Sign (LSE-Sign) loss to facilitate multi-label learning on a long-tailed dataset by balancing gradients over all classes in a softmax format. Our detection-free approach achieves 65.6 mAP in HOI classification on HICO, outperforming the detection-assisted state of the art (SOTA) by 18.5 mAP, and 52.7 mAP in one-shot classes, surpassing the SOTA by 27.3 mAP. Different from previous work, our classification model (DEFR) can be directly used in HOI detection without any additional training, by connecting to an off-the-shelf object detector whose bounding box output is converted to binary masks for DEFR. Surprisingly, such a simple connection of two decoupled models achieves SOTA performance (32.35 mAP).


Zero Cost Improvements for General Object Detection Network

Nov 16, 2020
Shaohua Wang, Yaping Dai

Modern object detection networks pursuit higher precision on general object detection datasets, at the same time the computation burden is also increasing along with the improvement of precision. Nevertheless, the inference time and precision are both critical to object detection system which needs to be real-time. It is necessary to research precision improvement without extra computation cost. In this work, two modules are proposed to improve detection precision with zero cost, which are focus on FPN and detection head improvement for general object detection networks. We employ the scale attention mechanism to efficiently fuse multi-level feature maps with less parameters, which is called SA-FPN module. Considering the correlation of classification head and regression head, we use sequential head to take the place of widely-used parallel head, which is called Seq-HEAD module. To evaluate the effectiveness, we apply the two modules to some modern state-of-art object detection networks, including anchor-based and anchor-free. Experiment results on coco dataset show that the networks with the two modules can surpass original networks by 1.1 AP and 0.8 AP with zero cost for anchor-based and anchor-free networks, respectively. Code will be available at


Aerial multi-object tracking by detection using deep association networks

Sep 04, 2019
Ajit Jadhav, Prerana Mukherjee, Vinay Kaushik, Brejesh Lall

A lot a research is focused on object detection and it has achieved significant advances with deep learning techniques in recent years. Inspite of the existing research, these algorithms are not usually optimal for dealing with sequences or images captured by drone-based platforms, due to various challenges such as view point change, scales, density of object distribution and occlusion. In this paper, we develop a model for detection of objects in drone images using the VisDrone2019 DET dataset. Using the RetinaNet model as our base, we modify the anchor scales to better handle the detection of dense distribution and small size of the objects. We explicitly model the channel interdependencies by using "Squeeze-and-Excitation" (SE) blocks that adaptively recalibrates channel-wise feature responses. This helps to bring significant improvements in performance at a slight additional computational cost. Using this architecture for object detection, we build a custom DeepSORT network for object detection on the VisDrone2019 MOT dataset by training a custom Deep Association network for the algorithm.


You Only Look Once: Unified, Real-Time Object Detection

May 09, 2016
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is far less likely to predict false detections where nothing exists. Finally, YOLO learns very general representations of objects. It outperforms all other detection methods, including DPM and R-CNN, by a wide margin when generalizing from natural images to artwork on both the Picasso Dataset and the People-Art Dataset.


Plug-and-Play Few-shot Object Detection with Meta Strategy and Explicit Localization Inference

Oct 26, 2021
Junying Huang, Fan Chen, Liang Lin, Dongyu Zhang

Aiming at recognizing and localizing the object of novel categories by a few reference samples, few-shot object detection is a quite challenging task. Previous works often depend on the fine-tuning process to transfer their model to the novel category and rarely consider the defect of fine-tuning, resulting in many drawbacks. For example, these methods are far from satisfying in the low-shot or episode-based scenarios since the fine-tuning process in object detection requires much time and high-shot support data. To this end, this paper proposes a plug-and-play few-shot object detection (PnP-FSOD) framework that can accurately and directly detect the objects of novel categories without the fine-tuning process. To accomplish the objective, the PnP-FSOD framework contains two parallel techniques to address the core challenges in the few-shot learning, i.e., across-category task and few-annotation support. Concretely, we first propose two simple but effective meta strategies for the box classifier and RPN module to enable the across-category object detection without fine-tuning. Then, we introduce two explicit inferences into the localization process to reduce its dependence on the annotated data, including explicit localization score and semi-explicit box regression. In addition to the PnP-FSOD framework, we propose a novel one-step tuning method that can avoid the defects in fine-tuning. It is noteworthy that the proposed techniques and tuning method are based on the general object detector without other prior methods, so they are easily compatible with the existing FSOD methods. Extensive experiments show that the PnP-FSOD framework has achieved the state-of-the-art few-shot object detection performance without any tuning method. After applying the one-step tuning method, it further shows a significant lead in both efficiency, precision, and recall, under varied evaluation protocols.

* submitted to TNNLS 

Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild

Mar 08, 2022
Xuefeng Du, Xin Wang, Gabriel Gozum, Yixuan Li

Building reliable object detectors that can detect out-of-distribution (OOD) objects is critical yet underexplored. One of the key challenges is that models lack supervision signals from unknown data, producing overconfident predictions on OOD objects. We propose a new unknown-aware object detection framework through Spatial-Temporal Unknown Distillation (STUD), which distills unknown objects from videos in the wild and meaningfully regularizes the model's decision boundary. STUD first identifies the unknown candidate object proposals in the spatial dimension, and then aggregates the candidates across multiple video frames to form a diverse set of unknown objects near the decision boundary. Alongside, we employ an energy-based uncertainty regularization loss, which contrastively shapes the uncertainty space between the in-distribution and distilled unknown objects. STUD establishes the state-of-the-art performance on OOD detection tasks for object detection, reducing the FPR95 score by over 10% compared to the previous best method. Code is available at

* CVPR2022