Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Detecting Human-to-Human-or-Object (H2O) Interactions with DIABOLO

Jan 07, 2022
Astrid Orcesi, Romaric Audigier, Fritz Poka Toukam, Bertrand Luvison

Detecting human interactions is crucial for human behavior analysis. Many methods have been proposed to deal with Human-to-Object Interaction (HOI) detection, i.e., detecting in an image which person and object interact together and classifying the type of interaction. However, Human-to-Human Interactions, such as social and violent interactions, are generally not considered in available HOI training datasets. As we think these types of interactions cannot be ignored and decorrelated from HOI when analyzing human behavior, we propose a new interaction dataset to deal with both types of human interactions: Human-to-Human-or-Object (H2O). In addition, we introduce a novel taxonomy of verbs, intended to be closer to a description of human body attitude in relation to the surrounding targets of interaction, and more independent of the environment. Unlike some existing datasets, we strive to avoid defining synonymous verbs when their use highly depends on the target type or requires a high level of semantic interpretation. As H2O dataset includes V-COCO images annotated with this new taxonomy, images obviously contain more interactions. This can be an issue for HOI detection methods whose complexity depends on the number of people, targets or interactions. Thus, we propose DIABOLO (Detecting InterActions By Only Looking Once), an efficient subject-centric single-shot method to detect all interactions in one forward pass, with constant inference time independent of image content. In addition, this multi-task network simultaneously detects all people and objects. We show how sharing a network for these tasks does not only save computation resource but also improves performance collaboratively. Finally, DIABOLO is a strong baseline for the new proposed challenge of H2O Interaction detection, as it outperforms all state-of-the-art methods when trained and evaluated on HOI dataset V-COCO.

* ACCEPTED in IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021) 
Access Paper or Ask Questions

YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles

Dec 23, 2021
Aduen Benjumea, Izzeddin Teeti, Fabio Cuzzolin, Andrew Bradley

As autonomous vehicles and autonomous racing rise in popularity, so does the need for faster and more accurate detectors. While our naked eyes are able to extract contextual information almost instantly, even from far away, image resolution and computational resources limitations make detecting smaller objects (that is, objects that occupy a small pixel area in the input image) a genuinely challenging task for machines and a wide-open research field. This study explores how the popular YOLOv5 object detector can be modified to improve its performance in detecting smaller objects, with a particular application in autonomous racing. To achieve this, we investigate how replacing certain structural elements of the model (as well as their connections and other parameters) can affect performance and inference time. In doing so, we propose a series of models at different scales, which we name `YOLO-Z', and which display an improvement of up to 6.9% in mAP when detecting smaller objects at 50% IOU, at the cost of just a 3ms increase in inference time compared to the original YOLOv5. Our objective is to inform future research on the potential of adjusting a popular detector such as YOLOv5 to address specific tasks and provide insights on how specific changes can impact small object detection. Such findings, applied to the broader context of autonomous vehicles, could increase the amount of contextual information available to such systems.

Access Paper or Ask Questions

R(Det)^2: Randomized Decision Routing for Object Detection

Apr 02, 2022
Ya-Li Li, Shengjin Wang

In the paradigm of object detection, the decision head is an important part, which affects detection performance significantly. Yet how to design a high-performance decision head remains to be an open issue. In this paper, we propose a novel approach to combine decision trees and deep neural networks in an end-to-end learning manner for object detection. First, we disentangle the decision choices and prediction values by plugging soft decision trees into neural networks. To facilitate effective learning, we propose randomized decision routing with node selective and associative losses, which can boost the feature representative learning and network decision simultaneously. Second, we develop the decision head for object detection with narrow branches to generate the routing probabilities and masks, for the purpose of obtaining divergent decisions from different nodes. We name this approach as the randomized decision routing for object detection, abbreviated as R(Det)$^2$. Experiments on MS-COCO dataset demonstrate that R(Det)$^2$ is effective to improve the detection performance. Equipped with existing detectors, it achieves $1.4\sim 3.6$\% AP improvement.

* 10 pages, 5 figures; Accepted by CVPR2022 
Access Paper or Ask Questions

Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

Jul 29, 2018
Yuxi Li, Jiuwei Li, Weiyao Lin, Jianguo Li

Object detection has made great progress in the past few years along with the development of deep learning. However, most current object detection methods are resource hungry, which hinders their wide deployment to many resource restricted usages such as usages on always-on devices, battery-powered low-end devices, etc. This paper considers the resource and accuracy trade-off for resource-restricted usages during designing the whole object detection framework. Based on the deeply supervised object detection (DSOD) framework, we propose Tiny-DSOD dedicating to resource-restricted usages. Tiny-DSOD introduces two innovative and ultra-efficient architecture blocks: depthwise dense block (DDB) based backbone and depthwise feature-pyramid-network (D-FPN) based front-end. We conduct extensive experiments on three famous benchmarks (PASCAL VOC 2007, KITTI, and COCO), and compare Tiny-DSOD to the state-of-the-art ultra-efficient object detection solutions such as Tiny-YOLO, MobileNet-SSD (v1 & v2), SqueezeDet, Pelee, etc. Results show that Tiny-DSOD outperforms these solutions in all the three metrics (parameter-size, FLOPs, accuracy) in each comparison. For instance, Tiny-DSOD achieves 72.1% mAP with only 0.95M parameters and 1.06B FLOPs, which is by far the state-of-the-arts result with such a low resource requirement.

* 12 pages, 3 figures, accepted by BMVC 2018 
Access Paper or Ask Questions

RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection

Aug 17, 2021
Yongming Rao, Benlin Liu, Yi Wei, Jiwen Lu, Cho-Jui Hsieh, Jie Zhou

3D point cloud understanding has made great progress in recent years. However, one major bottleneck is the scarcity of annotated real datasets, especially compared to 2D object detection tasks, since a large amount of labor is involved in annotating the real scans of a scene. A promising solution to this problem is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets. This can be achieved by the pre-training and fine-tuning procedure. However, recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications. In this work, we put forward a new method called RandomRooms to accomplish this objective. In particular, we propose to generate random layouts of a scene by making use of the objects in the synthetic CAD dataset and learn the 3D scene representation by applying object-level contrastive learning on two random scenes generated from the same set of synthetic objects. The model pre-trained in this way can serve as a better initialization when later fine-tuning on the 3D object detection task. Empirically, we show consistent improvement in downstream 3D detection tasks on several base models, especially when less training data are used, which strongly demonstrates the effectiveness and generalization of our method. Benefiting from the rich semantic knowledge and diverse objects from synthetic data, our method establishes the new state-of-the-art on widely-used 3D detection benchmarks ScanNetV2 and SUN RGB-D. We expect our attempt to provide a new perspective for bridging object and scene-level 3D understanding.

* Accepted to ICCV 2021 
Access Paper or Ask Questions

UrbanNet: Leveraging Urban Maps for Long Range 3D Object Detection

Oct 11, 2021
Juan Carrillo, Steven Waslander

Relying on monocular image data for precise 3D object detection remains an open problem, whose solution has broad implications for cost-sensitive applications such as traffic monitoring. We present UrbanNet, a modular architecture for long range monocular 3D object detection with static cameras. Our proposed system combines commonly available urban maps along with a mature 2D object detector and an efficient 3D object descriptor to accomplish accurate detection at long range even when objects are rotated along any of their three axes. We evaluate UrbanNet on a novel challenging synthetic dataset and highlight the advantages of its design for traffic detection in roads with changing slope, where the flat ground approximation does not hold. Data and code are available at

* To be published in the 24th IEEE International Conference on Intelligent Transportation Systems - ITSC2021 
Access Paper or Ask Questions

MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object Detection Algorithm

Jan 12, 2022
Zhouzhen Xie, Yuying Song, Jingxuan Wu, Zecheng Li, Chunyi Song, Zhiwei Xu

Monocular 3D object detection is very challenging in autonomous driving due to the lack of depth information. This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification, which uses the anchor-free method to detect 3D objects in a per-pixel prediction. In the proposed MDS-Net, a novel depth-based stratification structure is developed to improve the network's ability of depth prediction by establishing mathematical models between depth and image size of objects. A new angle loss function is then developed to further improve the accuracy of the angle prediction and increase the convergence speed of training. An optimized soft-NMS is finally applied in the post-processing stage to adjust the confidence of candidate boxes. Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks while fulfilling real-time requirements.

* 9 pages 
Access Paper or Ask Questions

CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

Jan 18, 2021
Qi Ming, Lingjuan Miao, Zhiqiang Zhou, Yunpeng Dong

Object detection in optical remote sensing images is an important and challenging task. In recent years, the methods based on convolutional neural networks have made good progress. However, due to the large variation in object scale, aspect ratio, and arbitrary orientation, the detection performance is difficult to be further improved. In this paper, we discuss the role of discriminative features in object detection, and then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy from three aspects: building powerful feature representation, refining preset anchors, and optimizing label assignment. Specifically, we first decouple the classification and regression features, and then construct robust critical features adapted to the respective tasks through the Polarization Attention Module (PAM). With the extracted discriminative regression features, the Rotation Anchor Refinement Module (R-ARM) performs localization refinement on preset horizontal anchors to obtain superior rotation anchors. Next, the Dynamic Anchor Learning (DAL) strategy is given to adaptively select high-quality anchors based on their ability to capture critical features. The proposed framework creates more powerful semantic representations for objects in remote sensing images and achieves high-performance real-time object detection. Experimental results on three remote sensing datasets including HRSC2016, DOTA, and UCAS-AOD show that our method achieves superior detection performance compared with many state-of-the-art approaches. Code and models are available at

* The code and models are available at 
Access Paper or Ask Questions

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

Aug 03, 2017
Chaitanya Mitash, Kostas E. Bekris, Abdeslam Boularias

Progress has been achieved recently in object detection given advancements in deep learning. Nevertheless, such tools typically require a large amount of training data and significant manual effort to label objects. This limits their applicability in robotics, where solutions must scale to a large number of objects and variety of conditions. This work proposes an autonomous process for training a Convolutional Neural Network (CNN) for object detection and pose estimation in robotic setups. The focus is on detecting objects placed in cluttered, tight environments, such as a shelf with multiple objects. In particular, given access to 3D object models, several aspects of the environment are physically simulated. The models are placed in physically realistic poses with respect to their environment to generate a labeled synthetic dataset. To further improve object detection, the network self-trains over real images that are labeled using a robust multi-view pose estimation process. The proposed training process is evaluated on several existing datasets and on a dataset collected for this paper with a Motoman robotic arm. Results show that the proposed approach outperforms popular training processes relying on synthetic - but not physically realistic - data and manual annotation. The key contributions are the incorporation of physical reasoning in the synthetic data generation process and the automation of the annotation process over real images.

* 7 pages, 6 figures, accepted at the IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017 
Access Paper or Ask Questions

Geodesic-based Salient Object Detection

Aug 23, 2013
Richard M Jiang

Saliency detection has been an intuitive way to provide useful cues for object detection and segmentation, as desired for many vision and graphics applications. In this paper, we provided a robust method for salient object detection and segmentation. Other than using various pixel-level contrast definitions, we exploited global image structures and proposed a new geodesic method dedicated for salient object detection. In the proposed approach, a new geodesic scheme, namely geodesic tunneling is proposed to tackle with textures and local chaotic structures. With our new geodesic approach, a geodesic saliency map is estimated in correspondence to spatial structures in an image. Experimental evaluation on a salient object benchmark dataset validated that our algorithm consistently outperformed a number of the state-of-art saliency methods, yielding higher precision and better recall rates. With the robust saliency estimation, we also present an unsupervised hierarchical salient object cut scheme simply using adaptive saliency thresholding, which attained the highest score in our F-measure test. We also applied our geodesic cut scheme to a number of image editing tasks as demonstrated in additional experiments.

* This is a revised version of our submissions to CVPR 2012, SIGRAPH Asia 2012, and CVPR 2013; 
* The manuscript was submitted to a conference. Due to anonymous review policy by the conference, I'd like to withdraw it temporarily 
Access Paper or Ask Questions