Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Deformable One-Dimensional Object Detection for Routing and Manipulation

Jan 18, 2022
Azarakhsh Keipour, Maryam Bandari, Stefan Schaal

Many methods exist to model and track deformable one-dimensional objects (e.g., cables, ropes, and threads) across a stream of video frames. However, these methods depend on the existence of some initial conditions. To the best of our knowledge, the topic of detection methods that can extract those initial conditions in non-trivial situations has hardly been addressed. The lack of detection methods limits the use of the tracking methods in real-world applications and is a bottleneck for fully autonomous applications that work with these objects. This paper proposes an approach for detecting deformable one-dimensional objects which can handle crossings and occlusions. It can be used for tasks such as routing and manipulation and automatically provides the initialization required by the tracking methods. Our algorithm takes an image containing a deformable object and outputs a chain of fixed-length cylindrical segments connected with passive spherical joints. The chain follows the natural behavior of the deformable object and fills the gaps and occlusions in the original image. Our tests and experiments have shown that the method can correctly detect deformable one-dimensional objects in various complex conditions.

* Accepted to RA-L, January 2022. 8 pages 
  
Access Paper or Ask Questions

Uncertainty for Identifying Open-Set Errors in Visual Object Detection

Apr 03, 2021
Dimity Miller, Niko Sünderhauf, Michael Milford, Feras Dayoub

Deployed into an open world, object detectors are prone to a type of false positive detection termed open-set errors. We propose GMM-Det, a real-time method for extracting epistemic uncertainty from object detectors to identify and reject open-set errors. GMM-Det trains the detector to produce a structured logit space that is modelled with class-specific Gaussian Mixture Models. At test time, open-set errors are identified by their low log-probability under all Gaussian Mixture Models. We test two common detector architectures, Faster R-CNN and RetinaNet, across three varied datasets spanning robotics and computer vision. Our results show that GMM-Det consistently outperforms existing uncertainty techniques for identifying and rejecting open-set detections, especially at the low-error-rate operating point required for safety-critical applications. GMM-Det maintains object detection performance, and introduces only minimal computational overhead. We also introduce a methodology for converting existing object detection datasets into specific open-set datasets to consistently evaluate open-set performance in object detection. Code for GMM-Det and the dataset methodology will be made publicly available.

  
Access Paper or Ask Questions

Quickest Moving Object Detection

May 24, 2016
Dong Lao, Ganesh Sundaramoorthi

We present a general framework and method for simultaneous detection and segmentation of an object in a video that moves (or comes into view of the camera) at some unknown time in the video. The method is an online approach based on motion segmentation, and it operates under dynamic backgrounds caused by a moving camera or moving nuisances. The goal of the method is to detect and segment the object as soon as it moves. Due to stochastic variability in the video and unreliability of the motion signal, several frames are needed to reliably detect the object. The method is designed to detect and segment with minimum delay subject to a constraint on the false alarm rate. The method is derived as a problem of Quickest Change Detection. Experiments on a dataset show the effectiveness of our method in minimizing detection delay subject to false alarm constraints.

  
Access Paper or Ask Questions

Spot the Difference by Object Detection

Jan 03, 2018
Junhui Wu, Yun Ye, Yu Chen, Zhi Weng

In this paper, we propose a simple yet effective solution to a change detection task that detects the difference between two images, which we call "spot the difference". Our approach uses CNN-based object detection by stacking two aligned images as input and considering the differences between the two images as objects to detect. An early-merging architecture is used as the backbone network. Our method is accurate, fast and robust while using very cheap annotation. We verify the proposed method on the task of change detection between the digital design and its photographic image of a book. Compared to verification based methods, our object detection based method outperforms other methods by a large margin and gives extra information of location. We compress the network and achieve 24 times acceleration while keeping the accuracy. Besides, as we synthesize the training data for detection using weakly labeled images, our method does not need expensive bounding box annotation.

* Tech Report, 10 pages 
  
Access Paper or Ask Questions

Objectness-Guided Open Set Visual Search and Closed Set Detection

Dec 11, 2020
Nathan Drenkow, Philippe Burlina, Neil Fendley, Kachi Odoemene, Jared Markowitz

Searching for small objects in large images is currently challenging for deep learning systems, but is a task with numerous applications including remote sensing and medical imaging. Thorough scanning of very large images is computationally expensive, particularly at resolutions sufficient to capture small objects. The smaller an object of interest, the more likely it is to be obscured by clutter or otherwise deemed insignificant. We examine these issues in the context of two complementary problems: closed-set object detection and open-set target search. First, we present a method for predicting pixel-level objectness from a low resolution gist image, which we then use to select regions for subsequent evaluation at high resolution. This approach has the benefit of not being fixed to a predetermined grid, allowing fewer costly high-resolution glimpses than existing methods. Second, we propose a novel strategy for open-set visual search that seeks to find all objects in an image of the same class as a given target reference image. We interpret both detection problems through a probabilistic, Bayesian lens, whereby the objectness maps produced by our method serve as priors in a maximum-a-posteriori approach to the detection step. We evaluate the end-to-end performance of both the combination of our patch selection strategy with this target search approach and the combination of our patch selection strategy with standard object detection methods. Both our patch selection and target search approaches are seen to significantly outperform baseline strategies.

  
Access Paper or Ask Questions

Improving CNN-based Planar Object Detection with Geometric Prior Knowledge

Sep 23, 2019
Jianxiong Cai, Hongyu Chen, Laurent Kneip, Sören Schwertfeger

In this paper, we focus on the question: how might mobile robots take advantage of affordable RGB-D sensors for object detection? Although current CNN-based object detectors have achieved impressive results, there are three main drawbacks for practical usage on mobile robots: 1) It is hard and time-consuming to collect and annotate large-scale training sets. 2) It usually needs a long training time. 3) CNN-based object detection shows significant weakness in predicting location. We propose a novel approach for the detection of planar objects, which rectifies images with geometric information to compensate for the perspective distortion before feeding it to the CNN detector module, typically a CNN-based detector like YOLO or MASK RCNN. By dealing with the perspective distortion in advance, we eliminate the need for the CNN detector to learn that. Experiments show that this approach significantly boosts the detection performance. Besides, it effectively reduces the number of training images required. In addition to the novel detection framework proposed, we also release an RGB-D dataset for hazmat sign detection. To the best of our knowledge, this is the first public-available hazmat sign detection dataset with RGB-D sensors.

* Both authors are first author and denote equal contribution 
  
Access Paper or Ask Questions

RestoreDet: Degradation Equivariant Representation for Object Detection in Low Resolution Images

Jan 07, 2022
Ziteng Cui, Yingying Zhu, Lin Gu, Guo-Jun Qi, Xiaoxiao Li, Peng Gao, Zenghui Zhang, Tatsuya Harada

Image restoration algorithms such as super resolution (SR) are indispensable pre-processing modules for object detection in degraded images. However, most of these algorithms assume the degradation is fixed and known a priori. When the real degradation is unknown or differs from assumption, both the pre-processing module and the consequent high-level task such as object detection would fail. Here, we propose a novel framework, RestoreDet, to detect objects in degraded low resolution images. RestoreDet utilizes the downsampling degradation as a kind of transformation for self-supervised signals to explore the equivariant representation against various resolutions and other degradation conditions. Specifically, we learn this intrinsic visual structure by encoding and decoding the degradation transformation from a pair of original and randomly degraded images. The framework could further take the advantage of advanced SR architectures with an arbitrary resolution restoring decoder to reconstruct the original correspondence from the degraded input image. Both the representation learning and object detection are optimized jointly in an end-to-end training fashion. RestoreDet is a generic framework that could be implemented on any mainstream object detection architectures. The extensive experiment shows that our framework based on CenterNet has achieved superior performance compared with existing methods when facing variant degradation situations. Our code would be released soon.

* 11 pages, 3figures 
  
Access Paper or Ask Questions

Scaling Object Detection by Transferring Classification Weights

Sep 15, 2019
Jason Kuen, Federico Perazzi, Zhe Lin, Jianming Zhang, Yap-Peng Tan

Large scale object detection datasets are constantly increasing their size in terms of the number of classes and annotations count. Yet, the number of object-level categories annotated in detection datasets is an order of magnitude smaller than image-level classification labels. State-of-the art object detection models are trained in a supervised fashion and this limits the number of object classes they can detect. In this paper, we propose a novel weight transfer network (WTN) to effectively and efficiently transfer knowledge from classification network's weights to detection network's weights to allow detection of novel classes without box supervision. We first introduce input and feature normalization schemes to curb the under-fitting during training of a vanilla WTN. We then propose autoencoder-WTN (AE-WTN) which uses reconstruction loss to preserve classification network's information over all classes in the target latent space to ensure generalization to novel classes. Compared to vanilla WTN, AE-WTN obtains absolute performance gains of 6% on two Open Images evaluation sets with 500 seen and 57 novel classes respectively, and 25% on a Visual Genome evaluation set with 200 novel classes. The code is available at https://github.com/xternalz/AE-WTN.

* ICCV 2019 
  
Access Paper or Ask Questions

A Semantic Consistency Feature Alignment Object Detection Model Based on Mixed-Class Distribution Metrics

Jun 12, 2022
Lijun Gou, Jinrong Yang, Hangcheng Yu, Pan Wang, Xiaoping Li, Chao Deng

Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, etc. They attempt to reduce domain bias-induced performance degradation while also promoting model application speed. Previous works in domain adaptation object detection attempt to align image-level and instance-level shifts to eventually minimize the domain discrepancy, but they may align single-class features to mixed-class features in image-level domain adaptation because each image in the object detection task may be more than one class and object. In order to achieve single-class with single-class alignment and mixed-class with mixed-class alignment, we treat the mixed-class of the feature as a new class and propose a mixed-classes $H-divergence$ for object detection to achieve homogenous feature alignment and reduce negative transfer. Then, a Semantic Consistency Feature Alignment Model (SCFAM) based on mixed-classes $H-divergence$ was also presented. To improve single-class and mixed-class semantic information and accomplish semantic separation, the SCFAM model proposes Semantic Prediction Models (SPM) and Semantic Bridging Components (SBC). And the weight of the pix domain discriminator loss is then changed based on the SPM result to reduce sample imbalance. Extensive unsupervised domain adaption experiments on widely used datasets illustrate our proposed approach's robust object detection in domain bias settings.

  
Access Paper or Ask Questions

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

Feb 26, 2018
Weifeng Ge, Sibei Yang, Yizhou Yu

Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly supervised curriculum learning pipeline for multi-label object recognition, detection and semantic segmentation. In this pipeline, we first obtain intermediate object localization and pixel labeling results for the training images, and then use such results to train task-specific deep networks in a fully supervised manner. The entire process consists of four stages, including object localization in the training images, filtering and fusing object instances, pixel labeling for the training images, and task-specific network training. To obtain clean object instances in the training images, we propose a novel algorithm for filtering, fusing and classifying object instances collected from multiple solution mechanisms. In this algorithm, we incorporate both metric learning and density-based clustering to filter detected object instances. Experiments show that our weakly supervised pipeline achieves state-of-the-art results in multi-label image classification as well as weakly supervised object detection and very competitive results in weakly supervised semantic segmentation on MS-COCO, PASCAL VOC 2007 and PASCAL VOC 2012.

* accepted by IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018 
  
Access Paper or Ask Questions
<<
41
42
43
44
45
46
47
48
49
50
>>