Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors

Aug 17, 2020
Jingru Yi, Pengxiang Wu, Bo Liu, Qiaoying Huang, Hui Qu, Dimitris Metaxas

Oriented object detection in aerial images is a challenging task as the objects in aerial images are displayed in arbitrary directions and are usually densely packed. Current oriented object detection methods mainly rely on two-stage anchor-based detectors. However, the anchor-based detectors typically suffer from a severe imbalance issue between the positive and negative anchor boxes. To address this issue, in this work we extend the horizontal keypoint-based object detector to the oriented object detection task. In particular, we first detect the center keypoints of the objects, based on which we then regress the box boundary-aware vectors (BBAVectors) to capture the oriented bounding boxes. The box boundary-aware vectors are distributed in the four quadrants of a Cartesian coordinate system for all arbitrarily oriented objects. To relieve the difficulty of learning the vectors in the corner cases, we further classify the oriented bounding boxes into horizontal and rotational bounding boxes. In the experiment, we show that learning the box boundary-aware vectors is superior to directly predicting the width, height, and angle of an oriented bounding box, as adopted in the baseline method. Besides, the proposed method competes favorably with state-of-the-art methods. Code is available at

* Accepted to WACV2021 
Access Paper or Ask Questions

Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in Crowded Traffic Scenes

Jun 15, 2020
Nils Gählert, Niklas Hanselmann, Uwe Franke, Joachim Denzler

Object detection is an important task in environment perception for autonomous driving. Modern 2D object detection frameworks such as Yolo, SSD or Faster R-CNN predict multiple bounding boxes per object that are refined using Non-Maximum-Suppression (NMS) to suppress all but one bounding box. While object detection itself is fully end-to-end learnable and does not require any manual parameter selection, standard NMS is parametrized by an overlap threshold that has to be chosen by hand. In practice, this often leads to an inability of standard NMS strategies to distinguish different objects in crowded scenes in the presence of high mutual occlusion, e.g. for parked cars or crowds of pedestrians. Our novel Visibility Guided NMS (vg-NMS) leverages both pixel-based as well as amodal object detection paradigms and improves the detection performance especially for highly occluded objects with little computational overhead. We evaluate vg-NMS using KITTI, VIPER as well as the Synscapes dataset and show that it outperforms current state-of-the-art NMS.

* Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada 
Access Paper or Ask Questions

Pseudo Mask Augmented Object Detection

Mar 27, 2018
Xiangyun Zhao, Shuang Liang, Yichen Wei

In this work, we present a novel and effective framework to facilitate object detection with the instance-level segmentation information that is only supervised by bounding box annotation. Starting from the joint object detection and instance segmentation network, we propose to recursively estimate the pseudo ground-truth object masks from the instance-level object segmentation network training, and then enhance the detection network with top-down segmentation feedbacks. The pseudo ground truth mask and network parameters are optimized alternatively to mutually benefit each other. To obtain the promising pseudo masks in each iteration, we embed a graphical inference that incorporates the low-level image appearance consistency and the bounding box annotations to refine the segmentation masks predicted by the segmentation network. Our approach progressively improves the object detection performance by incorporating the detailed pixel-wise information learned from the weakly-supervised segmentation network. Extensive evaluation on the detection task in PASCAL VOC 2007 and 2012 [12] verifies that the proposed approach is effective.

Access Paper or Ask Questions

RON: Reverse Connection with Objectness Prior Networks for Object Detection

Jul 06, 2017
Tao Kong, Fuchun Sun, Anbang Yao, Huaping Liu, Ming Lu, Yurong Chen

We present RON, an efficient and effective framework for generic object detection. Our motivation is to smartly associate the best of the region-based (e.g., Faster R-CNN) and region-free (e.g., SSD) methodologies. Under fully convolutional architecture, RON mainly focuses on two fundamental problems: (a) multi-scale object localization and (b) negative sample mining. To address (a), we design the reverse connection, which enables the network to detect objects on multi-levels of CNNs. To deal with (b), we propose the objectness prior to significantly reduce the searching space of objects. We optimize the reverse connection, objectness prior and object detector jointly by a multi-task loss function, thus RON can directly predict final detection results from all locations of various feature maps. Extensive experiments on the challenging PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO benchmarks demonstrate the competitive performance of RON. Specifically, with VGG-16 and low resolution 384X384 input size, the network gets 81.3% mAP on PASCAL VOC 2007, 80.7% mAP on PASCAL VOC 2012 datasets. Its superiority increases when datasets become larger and more difficult, as demonstrated by the results on the MS COCO dataset. With 1.5G GPU memory at test phase, the speed of the network is 15 FPS, 3X faster than the Faster R-CNN counterpart.

* Project page will be available at, and formal paper will appear in CVPR 2017 
Access Paper or Ask Questions

Knowledge Distillation for Oriented Object Detection on Aerial Images

Jun 20, 2022
Yicheng Xiao, Junpeng Zhang

Deep convolutional neural network with increased number of parameters has achieved improved precision in task of object detection on natural images, where objects of interests are annotated with horizontal boundary boxes. On aerial images captured from the bird-view perspective, these improvements on model architecture and deeper convolutional layers can also boost the performance on oriented object detection task. However, it is hard to directly apply those state-of-the-art object detectors on the devices with limited computation resources, which necessitates lightweight models through model compression. In order to address this issue, we present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet. With a well-trained teacher oriented object detector with a large number of parameters, the obtained object category and location information are both transferred to a compact student network in KD-RNet by collaborative training strategy. Transferring the category information is achieved by knowledge distillation on predicted probability distribution, and a soft regression loss is adopted for handling displacement in location information transfer. The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.

Access Paper or Ask Questions

CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

Sep 02, 2020
Su Pang, Daniel Morris, Hayder Radha

There have been significant advances in neural networks for both 3D object detection using LiDAR and 2D object detection using video. However, it has been surprisingly difficult to train networks to effectively use both modalities in a way that demonstrates gain over single-modality networks. In this paper, we propose a novel Camera-LiDAR Object Candidates (CLOCs) fusion network. CLOCs fusion provides a low-complexity multi-modal fusion framework that significantly improves the performance of single-modality detectors. CLOCs operates on the combined output candidates before Non-Maximum Suppression (NMS) of any 2D and any 3D detector, and is trained to leverage their geometric and semantic consistencies to produce more accurate final 3D and 2D detection results. Our experimental evaluation on the challenging KITTI object detection benchmark, including 3D and bird's eye view metrics, shows significant improvements, especially at long distance, over the state-of-the-art fusion based methods. At time of submission, CLOCs ranks the highest among all the fusion-based methods in the official KITTI leaderboard. We will release our code upon acceptance.

Access Paper or Ask Questions

Real-time object detection method based on improved YOLOv4-tiny

Nov 09, 2020
Zicong Jiang, Liquan Zhao, Shuaiyang Li, Yanfei Jia

The "You only look once v4"(YOLOv4) is one type of object detection methods in deep learning. YOLOv4-tiny is proposed based on YOLOv4 to simple the network structure and reduce parameters, which makes it be suitable for developing on the mobile and embedded devices. To improve the real-time of object detection, a fast object detection method is proposed based on YOLOv4-tiny. It firstly uses two ResBlock-D modules in ResNet-D network instead of two CSPBlock modules in Yolov4-tiny, which reduces the computation complexity. Secondly, it designs an auxiliary residual network block to extract more feature information of object to reduce detection error. In the design of auxiliary network, two consecutive 3x3 convolutions are used to obtain 5x5 receptive fields to extract global features, and channel attention and spatial attention are also used to extract more effective information. In the end, it merges the auxiliary network and backbone network to construct the whole network structure of improved YOLOv4-tiny. Simulation results show that the proposed method has faster object detection than YOLOv4-tiny and YOLOv3-tiny, and almost the same mean value of average precision as the YOLOv4-tiny. It is more suitable for real-time object detection.

* 14pages,7figures,2tables 
Access Paper or Ask Questions

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

Apr 03, 2016
Tao Kong, Anbang Yao, Yurong Chen, Fuchun Sun

Almost all of the current top-performing object detection networks employ region proposals to guide the search for object instances. State-of-the-art region proposal methods usually need several thousand proposals to get high recall, thus hurting the detection efficiency. Although the latest Region Proposal Network method gets promising detection accuracy with several hundred proposals, it still struggles in small-size object detection and precise localization (e.g., large IoU thresholds), mainly due to the coarseness of its feature maps. In this paper, we present a deep hierarchical network, namely HyperNet, for handling region proposal generation and object detection jointly. Our HyperNet is primarily based on an elaborately designed Hyper Feature which aggregates hierarchical feature maps first and then compresses them into a uniform space. The Hyper Features well incorporate deep but highly semantic, intermediate but really complementary, and shallow but naturally high-resolution features of the image, thus enabling us to construct HyperNet by sharing them both in generating proposals and detecting objects via an end-to-end joint training strategy. For the deep VGG16 model, our method achieves completely leading recall and state-of-the-art object detection accuracy on PASCAL VOC 2007 and 2012 using only 100 proposals per image. It runs with a speed of 5 fps (including all steps) on a GPU, thus having the potential for real-time processing.

* Accepted as a spotlight oral paper by CVPR 2016 
Access Paper or Ask Questions

RethNet: Object-by-Object Learning for Detecting Facial Skin Problems

Jan 11, 2021
Shohrukh Bekmirzaev, Seoyoung Oh, Sangwook Yoo

Semantic segmentation is a hot topic in computer vision where the most challenging tasks of object detection and recognition have been handling by the success of semantic segmentation approaches. We propose a concept of object-by-object learning technique to detect 11 types of facial skin lesions using semantic segmentation methods. Detecting individual skin lesion in a dense group is a challenging task, because of ambiguities in the appearance of the visual data. We observe that there exist co-occurrent visual relations between object classes (e.g., wrinkle and age spot, or papule and whitehead, etc.). In fact, rich contextual information significantly helps to handle the issue. Therefore, we propose REthinker blocks that are composed of the locally constructed convLSTM/Conv3D layers and SE module as a one-shot attention mechanism whose responsibility is to increase network's sensitivity in the local and global contextual representation that supports to capture ambiguously appeared objects and co-occurrence interactions between object classes. Experiments show that our proposed model reached MIoU of 79.46% on the test of a prepared dataset, representing a 15.34% improvement over Deeplab v3+ (MIoU of 64.12%).

* ICCV workshop 2019 
Access Paper or Ask Questions