Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Information": models, code, and papers

Back and Forth Between Rules and SE-Models (Extended Version)

Mar 01, 2011
Martin Slota, João Leite

Rules in logic programming encode information about mutual interdependencies between literals that is not captured by any of the commonly used semantics. This information becomes essential as soon as a program needs to be modified or further manipulated. We argue that, in these cases, a program should not be viewed solely as the set of its models. Instead, it should be viewed and manipulated as the set of sets of models of each rule inside it. With this in mind, we investigate and highlight relations between the SE-model semantics and individual rules. We identify a set of representatives of rule equivalence classes induced by SE-models, and so pinpoint the exact expressivity of this semantics with respect to a single rule. We also characterise the class of sets of SE-interpretations representable by a single rule. Finally, we discuss the introduction of two notions of equivalence, both stronger than strong equivalence [1] and weaker than strong update equivalence [2], which seem more suitable whenever the dependency information found in rules is of interest.

* 25 pages; extended version of the paper accepted for LPNMR 2011 

  Access Paper or Ask Questions

The Role of Time in the Creation of Knowledge

Jul 03, 2007
Roy E. Murphy

This paper I assume that in humans the creation of knowledge depends on a discrete time, or stage, sequential decision-making process subjected to a stochastic, information transmitting environment. For each time-stage, this environment randomly transmits Shannon type information-packets to the decision-maker, who examines each of them for relevancy and then determines his optimal choices. Using this set of relevant information-packets, the decision-maker adapts, over time, to the stochastic nature of his environment, and optimizes the subjective expected rate-of-growth of knowledge. The decision-maker's optimal actions, lead to a decision function that involves, over time, his view of the subjective entropy of the environmental process and other important parameters at each time-stage of the process. Using this model of human behavior, one could create psychometric experiments using computer simulation and real decision-makers, to play programmed games to measure the resulting human performance.

* Adaptive Processes 

  Access Paper or Ask Questions

Learning Summary Statistics for Bayesian Inference with Autoencoders

Jan 28, 2022
Carlo Albert, Simone Ulzega, Firat Ozdemir, Fernando Perez-Cruz, Antonietta Mira

For stochastic models with intractable likelihood functions, approximate Bayesian computation offers a way of approximating the true posterior through repeated comparisons of observations with simulated model outputs in terms of a small set of summary statistics. These statistics need to retain the information that is relevant for constraining the parameters but cancel out the noise. They can thus be seen as thermodynamic state variables, for general stochastic models. For many scientific applications, we need strictly more summary statistics than model parameters to reach a satisfactory approximation of the posterior. Therefore, we propose to use the inner dimension of deep neural network based Autoencoders as summary statistics. To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information on the noise that has been used to generate the training data. We validate the approach empirically on two types of stochastic models.


  Access Paper or Ask Questions

Machines and Influence

Dec 07, 2021
Shashank Yadav

Policymakers face a broader challenge of how to view AI capabilities today and where does society stand in terms of those capabilities. This paper surveys AI capabilities and tackles this very issue, exploring it in context of political security in digital societies. We introduce a Matrix of Machine Influence to frame and navigate the adversarial applications of AI, and further extend the ideas of Information Management to better understand contemporary AI systems deployment as part of a complex information system. Providing a comprehensive review of man-machine interactions in our networked society and political systems, we suggest that better regulation and management of information systems can more optimally offset the risks of AI and utilise the emerging capabilities which these systems have to offer to policymakers and political institutions across the world. Hopefully this long essay will actuate further debates and discussions over these ideas, and prove to be a useful contribution towards governing the future of AI.


  Access Paper or Ask Questions

Robust Speech Representation Learning via Flow-based Embedding Regularization

Dec 07, 2021
Woo Hyun Kang, Jahangir Alam, Abderrahim Fathan

Over the recent years, various deep learning-based methods were proposed for extracting a fixed-dimensional embedding vector from speech signals. Although the deep learning-based embedding extraction methods have shown good performance in numerous tasks including speaker verification, language identification and anti-spoofing, their performance is limited when it comes to mismatched conditions due to the variability within them unrelated to the main task. In order to alleviate this problem, we propose a novel training strategy that regularizes the embedding network to have minimum information about the nuisance attributes. To achieve this, our proposed method directly incorporates the information bottleneck scheme into the training process, where the mutual information is estimated using the main task classifier and an auxiliary normalizing flow network. The proposed method was evaluated on different speech processing tasks and showed improvement over the standard training strategy in all experimentation.


  Access Paper or Ask Questions

Interpreting multi-variate models with setPCA

Nov 17, 2021
Nordine Aouni, Luc Linders, David Robinson, Len Vandelaer, Jessica Wiezorek, Geetesh Gupta, Rachel Cavill

Principal Component Analysis (PCA) and other multi-variate models are often used in the analysis of "omics" data. These models contain much information which is currently neither easily accessible nor interpretable. Here we present an algorithmic method which has been developed to integrate this information with existing databases of background knowledge, stored in the form of known sets (for instance genesets or pathways). To make this accessible we have produced a Graphical User Interface (GUI) in Matlab which allows the overlay of known set information onto the loadings plot and thus improves the interpretability of the multi-variate model. For each known set the optimal convex hull, covering a subset of elements from the known set, is found through a search algorithm and displayed. In this paper we discuss two main topics; the details of the search algorithm for the optimal convex hull for this problem and the GUI interface which is freely available for download for academic use.


  Access Paper or Ask Questions

Learning When and What to Ask: a Hierarchical Reinforcement Learning Framework

Oct 14, 2021
Khanh Nguyen, Yonatan Bisk, Hal Daumé III

Reliable AI agents should be mindful of the limits of their knowledge and consult humans when sensing that they do not have sufficient knowledge to make sound decisions. We formulate a hierarchical reinforcement learning framework for learning to decide when to request additional information from humans and what type of information would be helpful to request. Our framework extends partially-observed Markov decision processes (POMDPs) by allowing an agent to interact with an assistant to leverage their knowledge in accomplishing tasks. Results on a simulated human-assisted navigation problem demonstrate the effectiveness of our framework: aided with an interaction policy learned by our method, a navigation policy achieves up to a 7x improvement in task success rate compared to performing tasks only by itself. The interaction policy is also efficient: on average, only a quarter of all actions taken during a task execution are requests for information. We analyze benefits and challenges of learning with a hierarchical policy structure and suggest directions for future work.

* 15 pages, 3 figures, 4 tables 

  Access Paper or Ask Questions

Contextual Inverse Optimization: Offline and Online Learning

Jun 26, 2021
Omar Besbes, Yuri Fonseca, Ilan Lobel

We study the problems of offline and online contextual optimization with feedback information, where instead of observing the loss, we observe, after-the-fact, the optimal action an oracle with full knowledge of the objective function would have taken. We aim to minimize regret, which is defined as the difference between our losses and the ones incurred by an all-knowing oracle. In the offline setting, the decision-maker has information available from past periods and needs to make one decision, while in the online setting, the decision-maker optimizes decisions dynamically over time based a new set of feasible actions and contextual functions in each period. For the offline setting, we characterize the optimal minimax policy, establishing the performance that can be achieved as a function of the underlying geometry of the information induced by the data. In the online setting, we leverage this geometric characterization to optimize the cumulative regret. We develop an algorithm that yields the first regret bound for this problem that is logarithmic in the time horizon.


  Access Paper or Ask Questions

EdgeConv with Attention Module for Monocular Depth Estimation

Jun 16, 2021
Minhyeok Lee, Sangwon Hwang, Chaewon Park, Sangyoun Lee

Monocular depth estimation is an especially important task in robotics and autonomous driving, where 3D structural information is essential. However, extreme lighting conditions and complex surface objects make it difficult to predict depth in a single image. Therefore, to generate accurate depth maps, it is important for the model to learn structural information about the scene. We propose a novel Patch-Wise EdgeConv Module (PEM) and EdgeConv Attention Module (EAM) to solve the difficulty of monocular depth estimation. The proposed modules extract structural information by learning the relationship between image patches close to each other in space using edge convolution. Our method is evaluated on two popular datasets, the NYU Depth V2 and the KITTI Eigen split, achieving state-of-the-art performance. We prove that the proposed model predicts depth robustly in challenging scenes through various comparative experiments.

* 10 pages, 7 figures 

  Access Paper or Ask Questions

<<
557
558
559
560
561
562
563
564
565
566
567
568
569
>>