Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

DocOIE: A Document-level Context-Aware Dataset for OpenIE

May 11, 2021
Kuicai Dong, Yilin Zhao, Aixin Sun, Jung-Jae Kim, Xiaoli Li

Open Information Extraction (OpenIE) aims to extract structured relational tuples (subject, relation, object) from sentences and plays critical roles for many downstream NLP applications. Existing solutions perform extraction at sentence level, without referring to any additional contextual information. In reality, however, a sentence typically exists as part of a document rather than standalone; we often need to access relevant contextual information around the sentence before we can accurately interpret it. As there is no document-level context-aware OpenIE dataset available, we manually annotate 800 sentences from 80 documents in two domains (Healthcare and Transportation) to form a DocOIE dataset for evaluation. In addition, we propose DocIE, a novel document-level context-aware OpenIE model. Our experimental results based on DocIE demonstrate that incorporating document-level context is helpful in improving OpenIE performance. Both DocOIE dataset and DocIE model are released for public.

* To appear in Findings of ACL 2021 

Text Based Approach For Indexing And Retrieval Of Image And Video: A Review

Apr 05, 2014
Avinash N Bhute, B. B. Meshram

Text data present in multimedia contain useful information for automatic annotation, indexing. Extracted information used for recognition of the overlay or scene text from a given video or image. The Extracted text can be used for retrieving the videos and images. In this paper, firstly, we are discussed the different techniques for text extraction from images and videos. Secondly, we are reviewed the techniques for indexing and retrieval of image and videos by using extracted text.

* Advances in Vision: An International Journal, Vol 1, no. 1, March 2014 
* 12 pages 

Shift-of-Perspective Identification Within Legal Cases

Jul 17, 2019
Gathika Ratnayaka, Thejan Rupasinghe, Nisansa de Silva, Viraj Salaka Gamage, Menuka Warushavithana, Amal Shehan Perera

Arguments, counter-arguments, facts, and evidence obtained via documents related to previous court cases are of essential need for legal professionals. Therefore, the process of automatic information extraction from documents containing legal opinions related to court cases can be considered to be of significant importance. This study is focused on the identification of sentences in legal opinion texts which convey different perspectives on a certain topic or entity. We combined several approaches based on semantic analysis, open information extraction, and sentiment analysis to achieve our objective. Then, our methodology was evaluated with the help of human judges. The outcomes of the evaluation demonstrate that our system is successful in detecting situations where two sentences deliver different opinions on the same topic or entity. The proposed methodology can be used to facilitate other information extraction tasks related to the legal domain. One such task is the automated detection of counter arguments for a given argument. Another is the identification of opponent parties in a court case.


High-Throughput and Language-Agnostic Entity Disambiguation and Linking on User Generated Data

Mar 13, 2017
Preeti Bhargava, Nemanja Spasojevic, Guoning Hu

The Entity Disambiguation and Linking (EDL) task matches entity mentions in text to a unique Knowledge Base (KB) identifier such as a Wikipedia or Freebase id. It plays a critical role in the construction of a high quality information network, and can be further leveraged for a variety of information retrieval and NLP tasks such as text categorization and document tagging. EDL is a complex and challenging problem due to ambiguity of the mentions and real world text being multi-lingual. Moreover, EDL systems need to have high throughput and should be lightweight in order to scale to large datasets and run on off-the-shelf machines. More importantly, these systems need to be able to extract and disambiguate dense annotations from the data in order to enable an Information Retrieval or Extraction task running on the data to be more efficient and accurate. In order to address all these challenges, we present the Lithium EDL system and algorithm - a high-throughput, lightweight, language-agnostic EDL system that extracts and correctly disambiguates 75% more entities than state-of-the-art EDL systems and is significantly faster than them.

* 10 pages, 7 figures, 5 tables, WWW2017, Linked Data on the Web workshop 2017, LDOW'17 

Information Extraction Using the Structured Language Model

Aug 29, 2001
Ciprian Chelba, Milind Mahajan

The paper presents a data-driven approach to information extraction (viewed as template filling) using the structured language model (SLM) as a statistical parser. The task of template filling is cast as constrained parsing using the SLM. The model is automatically trained from a set of sentences annotated with frame/slot labels and spans. Training proceeds in stages: first a constrained syntactic parser is trained such that the parses on training data meet the specified semantic spans, then the non-terminal labels are enriched to contain semantic information and finally a constrained syntactic+semantic parser is trained on the parse trees resulting from the previous stage. Despite the small amount of training data used, the model is shown to outperform the slot level accuracy of a simple semantic grammar authored manually for the MiPad --- personal information management --- task.

* EMNLP/NAACL 2001 Conference Proceedings 
* EMNLP'01, Pittsburgh; 8 pages 

Multi-Dimension Fusion Network for Light Field Spatial Super-Resolution using Dynamic Filters

Aug 26, 2020
Qingyan Sun, Shuo Zhang, Song Chang, Lixi Zhu, Youfang Lin

Light field cameras have been proved to be powerful tools for 3D reconstruction and virtual reality applications. However, the limited resolution of light field images brings a lot of difficulties for further information display and extraction. In this paper, we introduce a novel learning-based framework to improve the spatial resolution of light fields. First, features from different dimensions are parallelly extracted and fused together in our multi-dimension fusion architecture. These features are then used to generate dynamic filters, which extract subpixel information from micro-lens images and also implicitly consider the disparity information. Finally, more high-frequency details learned in the residual branch are added to the upsampled images and the final super-resolved light fields are obtained. Experimental results show that the proposed method uses fewer parameters but achieves better performances than other state-of-the-art methods in various kinds of datasets. Our reconstructed images also show sharp details and distinct lines in both sub-aperture images and epipolar plane images.


Edge-aware Guidance Fusion Network for RGB Thermal Scene Parsing

Dec 09, 2021
Wujie Zhou, Shaohua Dong, Caie Xu, Yaguan Qian

RGB thermal scene parsing has recently attracted increasing research interest in the field of computer vision. However, most existing methods fail to perform good boundary extraction for prediction maps and cannot fully use high level features. In addition, these methods simply fuse the features from RGB and thermal modalities but are unable to obtain comprehensive fused features. To address these problems, we propose an edge-aware guidance fusion network (EGFNet) for RGB thermal scene parsing. First, we introduce a prior edge map generated using the RGB and thermal images to capture detailed information in the prediction map and then embed the prior edge information in the feature maps. To effectively fuse the RGB and thermal information, we propose a multimodal fusion module that guarantees adequate cross-modal fusion. Considering the importance of high level semantic information, we propose a global information module and a semantic information module to extract rich semantic information from the high-level features. For decoding, we use simple elementwise addition for cascaded feature fusion. Finally, to improve the parsing accuracy, we apply multitask deep supervision to the semantic and boundary maps. Extensive experiments were performed on benchmark datasets to demonstrate the effectiveness of the proposed EGFNet and its superior performance compared with state of the art methods. The code and results can be found at

* Accepted by AAAI2022 

A Measure of Similarity in Textual Data Using Spearman's Rank Correlation Coefficient

Nov 26, 2019
Nino Arsov, Milan Dukovski, Blagoja Evkoski, Stefan Cvetkovski

In the last decade, many diverse advances have occurred in the field of information extraction from data. Information extraction in its simplest form takes place in computing environments, where structured data can be extracted through a series of queries. The continuous expansion of quantities of data have therefore provided an opportunity for knowledge extraction (KE) from a textual document (TD). A typical problem of this kind is the extraction of common characteristics and knowledge from a group of TDs, with the possibility to group such similar TDs in a process known as clustering. In this paper we present a technique for such KE among a group of TDs related to the common characteristics and meaning of their content. Our technique is based on the Spearman's Rank Correlation Coefficient (SRCC), for which the conducted experiments have proven to be comprehensive measure to achieve a high-quality KE.


EBOCA: Evidences for BiOmedical Concepts Association Ontology

Aug 01, 2022
Andrea Álvarez Pérez, Ana Iglesias-Molina, Lucía Prieto Santamaría, María Poveda-Villalón, Carlos Badenes-Olmedo, Alejandro Rodríguez-Gonzålez

There is a large number of online documents data sources available nowadays. The lack of structure and the differences between formats are the main difficulties to automatically extract information from them, which also has a negative impact on its use and reuse. In the biomedical domain, the DISNET platform emerged to provide researchers with a resource to obtain information in the scope of human disease networks by means of large-scale heterogeneous sources. Specifically in this domain, it is critical to offer not only the information extracted from different sources, but also the evidence that supports it. This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations; with the objective of providing an schema to improve the publication and description of evidences and biomedical associations in this domain. The ontology has been successfully evaluated to ensure there are no errors, modelling pitfalls and that it meets the previously defined functional requirements. Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed according to the proposed ontology to create a Knowledge Graph that can be used in real scenarios, and which has also been used for the evaluation of the presented ontology.