Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Detecting and resolving spatial ambiguity in text using named entity extraction and self learning fuzzy logic techniques

Mar 03, 2013
Kanagavalli V R, Raja. K

Information extraction identifies useful and relevant text in a document and converts unstructured text into a form that can be loaded into a database table. Named entity extraction is a main task in the process of information extraction and is a classification problem in which words are assigned to one or more semantic classes or to a default non-entity class. A word which can belong to one or more classes and which has a level of uncertainty in it can be best handled by a self learning Fuzzy Logic Technique. This paper proposes a method for detecting the presence of spatial uncertainty in the text and dealing with spatial ambiguity using named entity extraction techniques coupled with self learning fuzzy logic techniques

* National Conference on Recent Trends in Data Mining and Distributed Systems September 2011 

Information Prediction using Knowledge Graphs for Contextual Malware Threat Intelligence

Feb 18, 2021
Nidhi Rastogi, Sharmishtha Dutta, Ryan Christian, Mohammad Zaki, Alex Gittens, Charu Aggarwal

Large amounts of threat intelligence information about mal-ware attacks are available in disparate, typically unstructured, formats. Knowledge graphs can capture this information and its context using RDF triples represented by entities and relations. Sparse or inaccurate threat information, however, leads to challenges such as incomplete or erroneous triples. Named entity recognition (NER) and relation extraction (RE) models used to populate the knowledge graph cannot fully guaran-tee accurate information retrieval, further exacerbating this problem. This paper proposes an end-to-end approach to generate a Malware Knowledge Graph called MalKG, the first open-source automated knowledge graph for malware threat intelligence. MalKG dataset called MT40K1 contains approximately 40,000 triples generated from 27,354 unique entities and 34 relations. We demonstrate the application of MalKGin predicting missing malware threat intelligence information in the knowledge graph. For ground truth, we manually curate a knowledge graph called MT3K, with 3,027 triples generated from 5,741 unique entities and 22 relations. For entity prediction via a state-of-the-art entity prediction model(TuckER), our approach achieves 80.4 for the [email protected] metric (predicts the top 10 options for missing entities in the knowledge graph), and 0.75 for the MRR (mean reciprocal rank). We also propose a framework to automate the extraction of thousands of entities and relations into RDF triples, both manually and automatically, at the sentence level from1,100 malware threat intelligence reports and from the com-mon vulnerabilities and exposures (CVE) database.

* 14 pages 

Offline Extraction of Indic Regional Language from Natural Scene Image using Text Segmentation and Deep Convolutional Sequence

Jul 06, 2018
Sauradip Nag, Pallab Kumar Ganguly, Sumit Roy, Sourab Jha, Krishna Bose, Abhishek Jha, Kousik Dasgupta

Regional language extraction from a natural scene image is always a challenging proposition due to its dependence on the text information extracted from Image. Text Extraction on the other hand varies on different lighting condition, arbitrary orientation, inadequate text information, heavy background influence over text and change of text appearance. This paper presents a novel unified method for tackling the above challenges. The proposed work uses an image correction and segmentation technique on the existing Text Detection Pipeline an Efficient and Accurate Scene Text Detector (EAST). EAST uses standard PVAnet architecture to select features and non maximal suppression to detect text from image. Text recognition is done using combined architecture of MaxOut convolution neural network (CNN) and Bidirectional long short term memory (LSTM) network. After recognizing text using the Deep Learning based approach, the native Languages are translated to English and tokenized using standard Text Tokenizers. The tokens that very likely represent a location is used to find the Global Positioning System (GPS) coordinates of the location and subsequently the regional languages spoken in that location is extracted. The proposed method is tested on a self generated dataset collected from Government of India dataset and experimented on Standard Dataset to evaluate the performance of the proposed technique. Comparative study with a few state-of-the-art methods on text detection, recognition and extraction of regional language from images shows that the proposed method outperforms the existing methods.

* Accepted in Second International Conference on Computational Intelligence, Communications, and Business Analytics (CICBA-2018) 

A system for information extraction from scientific texts in Russian

Sep 14, 2021
Elena Bruches, Anastasia Mezentseva, Tatiana Batura

In this paper, we present a system for information extraction from scientific texts in the Russian language. The system performs several tasks in an end-to-end manner: term recognition, extraction of relations between terms, and term linking with entities from the knowledge base. These tasks are extremely important for information retrieval, recommendation systems, and classification. The advantage of the implemented methods is that the system does not require a large amount of labeled data, which saves time and effort for data labeling and therefore can be applied in low- and mid-resource settings. The source code is publicly available and can be used for different research purposes.


Extracting Semantics from Maintenance Records

Aug 11, 2021
Sharad Dixit, Varish Mulwad, Abhinav Saxena

Rapid progress in natural language processing has led to its utilization in a variety of industrial and enterprise settings, including in its use for information extraction, specifically named entity recognition and relation extraction, from documents such as engineering manuals and field maintenance reports. While named entity recognition is a well-studied problem, existing state-of-the-art approaches require large labelled datasets which are hard to acquire for sensitive data such as maintenance records. Further, industrial domain experts tend to distrust results from black box machine learning models, especially when the extracted information is used in downstream predictive maintenance analytics. We overcome these challenges by developing three approaches built on the foundation of domain expert knowledge captured in dictionaries and ontologies. We develop a syntactic and semantic rules-based approach and an approach leveraging a pre-trained language model, fine-tuned for a question-answering task on top of our base dictionary lookup to extract entities of interest from maintenance records. We also develop a preliminary ontology to represent and capture the semantics of maintenance records. Our evaluations on a real-world aviation maintenance records dataset show promising results and help identify challenges specific to named entity recognition in the context of noisy industrial data.

* Appears in the International Joint Conference on Artificial Intelligence (IJCAI) 2021 Workshop on Applied Semantics Extraction and Analytics (ASEA) 

Construction of English Resume Corpus and Test with Pre-trained Language Models

Aug 05, 2022
Chengguang Gan, Tatsunori Mori

Information extraction(IE) has always been one of the essential tasks of NLP. Moreover, one of the most critical application scenarios of information extraction is the information extraction of resumes. Constructed text is obtained by classifying each part of the resume. It is convenient to store these texts for later search and analysis. Furthermore, the constructed resume data can also be used in the AI resume screening system. Significantly reduce the labor cost of HR. This study aims to transform the information extraction task of resumes into a simple sentence classification task. Based on the English resume dataset produced by the prior study. The classification rules are improved to create a larger and more fine-grained classification dataset of resumes. This corpus is also used to test some current mainstream Pre-training language models (PLMs) performance.Furthermore, in order to explore the relationship between the number of training samples and the correctness rate of the resume dataset, we also performed comparison experiments with training sets of different train set sizes.The final multiple experimental results show that the resume dataset with improved annotation rules and increased sample size of the dataset improves the accuracy of the original resume dataset.

* 5 pages, 7 figures 

Efficient Dependency-Guided Named Entity Recognition

Oct 22, 2018
Zhanming Jie, Aldrian Obaja Muis, Wei Lu

Named entity recognition (NER), which focuses on the extraction of semantically meaningful named entities and their semantic classes from text, serves as an indispensable component for several down-stream natural language processing (NLP) tasks such as relation extraction and event extraction. Dependency trees, on the other hand, also convey crucial semantic-level information. It has been shown previously that such information can be used to improve the performance of NER (Sasano and Kurohashi 2008, Ling and Weld 2012). In this work, we investigate on how to better utilize the structured information conveyed by dependency trees to improve the performance of NER. Specifically, unlike existing approaches which only exploit dependency information for designing local features, we show that certain global structured information of the dependency trees can be exploited when building NER models where such information can provide guided learning and inference. Through extensive experiments, we show that our proposed novel dependency-guided NER model performs competitively with models based on conventional semi-Markov conditional random fields, while requiring significantly less running time.

* 8+1 pages, 9 pages supplementary. Published in The 31st AAAI Conference on Artificial Intelligence (AAAI 2017). This version fixes the errors in two equations. arXiv admin note: text overlap with arXiv:1711.07010 by other authors 

Global-to-Local Neural Networks for Document-Level Relation Extraction

Sep 22, 2020
Difeng Wang, Wei Hu, Ermei Cao, Weijian Sun

Relation extraction (RE) aims to identify the semantic relations between named entities in text. Recent years have witnessed it raised to the document level, which requires complex reasoning with entities and mentions throughout an entire document. In this paper, we propose a novel model to document-level RE, by encoding the document information in terms of entity global and local representations as well as context relation representations. Entity global representations model the semantic information of all entities in the document, entity local representations aggregate the contextual information of multiple mentions of specific entities, and context relation representations encode the topic information of other relations. Experimental results demonstrate that our model achieves superior performance on two public datasets for document-level RE. It is particularly effective in extracting relations between entities of long distance and having multiple mentions.

* Accepted in the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020) 

Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension

May 16, 2018
Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, Tian Wu

While sophisticated neural-based techniques have been developed in reading comprehension, most approaches model the answer in an independent manner, ignoring its relations with other answer candidates. This problem can be even worse in open-domain scenarios, where candidates from multiple passages should be combined to answer a single question. In this paper, we formulate reading comprehension as an extract-then-select two-stage procedure. We first extract answer candidates from passages, then select the final answer by combining information from all the candidates. Furthermore, we regard candidate extraction as a latent variable and train the two-stage process jointly with reinforcement learning. As a result, our approach has improved the state-of-the-art performance significantly on two challenging open-domain reading comprehension datasets. Further analysis demonstrates the effectiveness of our model components, especially the information fusion of all the candidates and the joint training of the extract-then-select procedure.

* 10 pages, Accepted by ACL 2018