Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding

May 13, 2020
Xinya Du, Claire Cardie

Few works in the literature of event extraction have gone beyond individual sentences to make extraction decisions. This is problematic when the information needed to recognize an event argument is spread across multiple sentences. We argue that document-level event extraction is a difficult task since it requires a view of a larger context to determine which spans of text correspond to event role fillers. We first investigate how end-to-end neural sequence models (with pre-trained language model representations) perform on document-level role filler extraction, as well as how the length of context captured affects the models' performance. To dynamically aggregate information captured by neural representations learned at different levels of granularity (e.g., the sentence- and paragraph-level), we propose a novel multi-granularity reader. We evaluate our models on the MUC-4 event extraction dataset, and show that our best system performs substantially better than prior work. We also report findings on the relationship between context length and neural model performance on the task.

* Accepted to ACL 2020 (long papers), 12 pages 
  

Joint Multimedia Event Extraction from Video and Article

Sep 27, 2021
Brian Chen, Xudong Lin, Christopher Thomas, Manling Li, Shoya Yoshida, Lovish Chum, Heng Ji, Shih-Fu Chang

Visual and textual modalities contribute complementary information about events described in multimedia documents. Videos contain rich dynamics and detailed unfoldings of events, while text describes more high-level and abstract concepts. However, existing event extraction methods either do not handle video or solely target video while ignoring other modalities. In contrast, we propose the first approach to jointly extract events from video and text articles. We introduce the new task of Video MultiMedia Event Extraction (Video M2E2) and propose two novel components to build the first system towards this task. First, we propose the first self-supervised multimodal event coreference model that can determine coreference between video events and text events without any manually annotated pairs. Second, we introduce the first multimodal transformer which extracts structured event information jointly from both videos and text documents. We also construct and will publicly release a new benchmark of video-article pairs, consisting of 860 video-article pairs with extensive annotations for evaluating methods on this task. Our experimental results demonstrate the effectiveness of our proposed method on our new benchmark dataset. We achieve 6.0% and 5.8% absolute F-score gain on multimodal event coreference resolution and multimedia event extraction.

* To be presented at EMNLP 2021 findings 
  

Text Enriched Sparse Hyperbolic Graph Convolutional Networks

Jul 07, 2022
Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Chandan K. Reddy

Heterogeneous networks, which connect informative nodes containing text with different edge types, are routinely used to store and process information in various real-world applications. Graph Neural Networks (GNNs) and their hyperbolic variants provide a promising approach to encode such networks in a low-dimensional latent space through neighborhood aggregation and hierarchical feature extraction, respectively. However, these approaches typically ignore metapath structures and the available semantic information. Furthermore, these approaches are sensitive to the noise present in the training data. To tackle these limitations, in this paper, we propose Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN) to capture the graph's metapath structures using semantic signals and further improve prediction in large heterogeneous graphs. In TESH-GCN, we extract semantic node information, which successively acts as a connection signal to extract relevant nodes' local neighborhood and graph-level metapath features from the sparse adjacency tensor in a reformulated hyperbolic graph convolution layer. These extracted features in conjunction with semantic features from the language model (for robustness) are used for the final downstream task. Experiments on various heterogeneous graph datasets show that our model outperforms the current state-of-the-art approaches by a large margin on the task of link prediction. We also report a reduction in both the training time and model parameters compared to the existing hyperbolic approaches through a reformulated hyperbolic graph convolution. Furthermore, we illustrate the robustness of our model by experimenting with different levels of simulated noise in both the graph structure and text, and also, present a mechanism to explain TESH-GCN's prediction by analyzing the extracted metapaths.

* Preprint under review. 13 pages, 10 figures, 6 tables 
  

DiSCoMaT: Distantly Supervised Composition Extraction from Tables in Materials Science Articles

Jul 10, 2022
Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, Mausam

A crucial component in the curation of KB for a scientific domain is information extraction from tables in the domain's published articles -- tables carry important information (often numeric), which must be adequately extracted for a comprehensive machine understanding of an article. Existing table extractors assume prior knowledge of table structure and format, which may not be known in scientific tables. We study a specific and challenging table extraction problem: extracting compositions of materials (e.g., glasses, alloys). We first observe that materials science researchers organize similar compositions in a wide variety of table styles, necessitating an intelligent model for table understanding and composition extraction. Consequently, we define this novel task as a challenge for the ML community and create a training dataset comprising 4,408 distantly supervised tables, along with 1,475 manually annotated dev and test tables. We also present DiSCoMaT, a strong baseline geared towards this specific task, which combines multiple graph neural networks with several task-specific regular expressions, features, and constraints. We show that DiSCoMaT outperforms recent table processing architectures by significant margins.

  

DiSCoMaT: Distantly Supervised Composition Extraction from Tables in Material Science Articles

Jul 03, 2022
Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, Mausam

A crucial component in the curation of KB for a scientific domain is information extraction from tables in the domain's published articles -- tables carry important information (often numeric), which must be adequately extracted for a comprehensive machine understanding of an article. Existing table extractors assume prior knowledge of table structure and format, which may not be known in scientific tables. We study a specific and challenging table extraction problem: extracting compositions of materials (e.g., glasses, alloys). We first observe that material science researchers organize similar compositions in a wide variety of table styles, necessitating an intelligent model for table understanding and composition extraction. Consequently, we define this novel task as a challenge for the ML community and create a training dataset comprising 4,408 distantly supervised tables, along with 1,475 manually annotated dev and test tables. We also present DiSCoMaT, a strong baseline geared towards this specific task, which combines multiple graph neural networks with several task-specific regular expressions, features, and constraints. We show that DiSCoMaT outperforms recent table processing architectures by significant margins.

  

Healthcare Cost Prediction: Leveraging Fine-grain Temporal Patterns

Sep 14, 2020
Mohammad Amin Morid, Olivia R. Liu Sheng, Kensaku Kawamoto, Travis Ault, Josette Dorius, Samir Abdelrahman

Objective: To design and assess a method to leverage individuals' temporal data for predicting their healthcare cost. To achieve this goal, we first used patients' temporal data in their fine-grain form as opposed to coarse-grain form. Second, we devised novel spike detection features to extract temporal patterns that improve the performance of cost prediction. Third, we evaluated the effectiveness of different types of temporal features based on cost information, visit information and medical information for the prediction task. Materials and methods: We used three years of medical and pharmacy claims data from 2013 to 2016 from a healthcare insurer, where the first two years were used to build the model to predict the costs in the third year. To prepare the data for modeling and prediction, the time series data of cost, visit and medical information were extracted in the form of fine-grain features (i.e., segmenting each time series into a sequence of consecutive windows and representing each window by various statistics such as sum). Then, temporal patterns of the time series were extracted and added to fine-grain features using a novel set of spike detection features (i.e., the fluctuation of data points). Gradient Boosting was applied on the final set of extracted features. Moreover, the contribution of each type of data (i.e., cost, visit and medical) was assessed. Conclusions: Leveraging fine-grain temporal patterns for healthcare cost prediction significantly improves prediction performance. Enhancing fine-grain features with extraction of temporal cost and visit patterns significantly improved the performance. However, medical features did not have a significant effect on prediction performance. Gradient Boosting outperformed all other prediction models.

* Journal of biomedical informatics, 91 (2019) 
  

SAIS: Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction

Sep 24, 2021
Yuxin Xiao, Zecheng Zhang, Yuning Mao, Carl Yang, Jiawei Han

Stepping from sentence-level to document-level relation extraction, the research community confronts increasing text length and more complicated entity interactions. Consequently, it is more challenging to encode the key sources of information--relevant contexts and entity types. However, existing methods only implicitly learn to model these critical information sources while being trained for relation extraction. As a result, they suffer the problems of ineffective supervision and uninterpretable model predictions. In contrast, we propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction. Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately so as to enhance interpretability. By assessing model uncertainty, SAIS further boosts the performance via evidence-based data augmentation and ensemble inference while reducing the computational cost. Eventually, SAIS delivers state-of-the-art relation extraction results on three benchmarks (DocRED, CDR, and GDA) and achieves 5.04% relative gains in F1 score compared to the runner-up in evidence retrieval on DocRED.

  

Large Language Models are Zero-Shot Clinical Information Extractors

May 25, 2022
Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, David Sontag

We show that large language models, such as GPT-3, perform well at zero-shot information extraction from clinical text despite not being trained specifically for the clinical domain. We present several examples showing how to use these models as tools for the diverse tasks of (i) concept disambiguation, (ii) evidence extraction, (iii) coreference resolution, and (iv) concept extraction, all on clinical text. The key to good performance is the use of simple task-specific programs that map from the language model outputs to the label space of the task. We refer to these programs as resolvers, a generalization of the verbalizer, which defines a mapping between output tokens and a discrete label space. We show in our examples that good resolvers share common components (e.g., "safety checks" that ensure the language model outputs faithfully match the input data), and that the common patterns across tasks make resolvers lightweight and easy to create. To better evaluate these systems, we also introduce two new datasets for benchmarking zero-shot clinical information extraction based on manual relabeling of the CASI dataset (Moon et al., 2014) with labels for new tasks. On the clinical extraction tasks we studied, the GPT-3 + resolver systems significantly outperform existing zero- and few-shot baselines.

  

Light Weight Residual Dense Attention Net for Spectral Reconstruction from RGB Images

Apr 19, 2020
D. Sabari Nathan, K. Uma, D Synthiya Vinothini, B. Sathya Bama, S. M. Md Mansoor Roomi

Hyperspectral Imaging is the acquisition of spectral and spatial information of a particular scene. Capturing such information from a specialized hyperspectral camera remains costly. Reconstructing such information from the RGB image achieves a better solution in both classification and object recognition tasks. This work proposes a novel light weight network with very less number of parameters about 233,059 parameters based on Residual dense model with attention mechanism to obtain this solution. This network uses Coordination Convolutional Block to get the spatial information. The weights from this block are shared by two independent feature extraction mechanisms, one by dense feature extraction and the other by the multiscale hierarchical feature extraction. Finally, the features from both the feature extraction mechanisms are globally fused to produce the 31 spectral bands. The network is trained with NTIRE 2020 challenge dataset and thus achieved 0.0457 MRAE metric value with less computational complexity.

* 6pages,4 figures 
  
<<
24
25
26
27
28
29
30
31
32
33
34
35
36
>>