Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Information Extraction From Co-Occurring Similar Entities

Feb 11, 2021
Nicolas Heist, Heiko Paulheim

Knowledge about entities and their interrelations is a crucial factor of success for tasks like question answering or text summarization. Publicly available knowledge graphs like Wikidata or DBpedia are, however, far from being complete. In this paper, we explore how information extracted from similar entities that co-occur in structures like tables or lists can help to increase the coverage of such knowledge graphs. In contrast to existing approaches, we do not focus on relationships within a listing (e.g., between two entities in a table row) but on the relationship between a listing's subject entities and the context of the listing. To that end, we propose a descriptive rule mining approach that uses distant supervision to derive rules for these relationships based on a listing's context. Extracted from a suitable data corpus, the rules can be used to extend a knowledge graph with novel entities and assertions. In our experiments we demonstrate that the approach is able to extract up to 3M novel entities and 30M additional assertions from listings in Wikipedia. We find that the extracted information is of high quality and thus suitable to extend Wikipedia-based knowledge graphs like DBpedia, YAGO, and CaLiGraph. For the case of DBpedia, this would result in an increase of covered entities by roughly 50%.

* Preprint of a paper accepted for the research track of the Web Conference (WWW'21), April 19-23, 2021, Ljubljana, Slovenia 

Graph Convolution for Multimodal Information Extraction from Visually Rich Documents

Mar 27, 2019
Xiaojing Liu, Feiyu Gao, Qiong Zhang, Huasha Zhao

Visually rich documents (VRDs) are ubiquitous in daily business and life. Examples are purchase receipts, insurance policy documents, custom declaration forms and so on. In VRDs, visual and layout information is critical for document understanding, and texts in such documents cannot be serialized into the one-dimensional sequence without losing information. Classic information extraction models such as BiLSTM-CRF typically operate on text sequences and do not incorporate visual features. In this paper, we introduce a graph convolution based model to combine textual and visual information presented in VRDs. Graph embeddings are trained to summarize the context of a text segment in the document, and further combined with text embeddings for entity extraction. Extensive experiments have been conducted to show that our method outperforms BiLSTM-CRF baselines by significant margins, on two real-world datasets. Additionally, ablation studies are also performed to evaluate the effectiveness of each component of our model.

* naacl'19 accepted paper 

A Multilingual Information Extraction Pipeline for Investigative Journalism

Sep 01, 2018
Gregor Wiedemann, Seid Muhie Yimam, Chris Biemann

We introduce an advanced information extraction pipeline to automatically process very large collections of unstructured textual data for the purpose of investigative journalism. The pipeline serves as a new input processor for the upcoming major release of our New/s/leak 2.0 software, which we develop in cooperation with a large German news organization. The use case is that journalists receive a large collection of files up to several Gigabytes containing unknown contents. Collections may originate either from official disclosures of documents, e.g. Freedom of Information Act requests, or unofficial data leaks. Our software prepares a visually-aided exploration of the collection to quickly learn about potential stories contained in the data. It is based on the automatic extraction of entities and their co-occurrence in documents. In contrast to comparable projects, we focus on the following three major requirements particularly serving the use case of investigative journalism in cross-border collaborations: 1) composition of multiple state-of-the-art NLP tools for entity extraction, 2) support of multi-lingual document sets up to 40 languages, 3) fast and easy-to-use extraction of full-text, metadata and entities from various file formats.

* EMNLP 2018 Demo. arXiv admin note: text overlap with arXiv:1807.05151 

Time-Domain Speech Extraction with Spatial Information and Multi Speaker Conditioning Mechanism

Feb 07, 2021
Jisi Zhang, Catalin Zorila, Rama Doddipatla, Jon Barker

In this paper, we present a novel multi-channel speech extraction system to simultaneously extract multiple clean individual sources from a mixture in noisy and reverberant environments. The proposed method is built on an improved multi-channel time-domain speech separation network which employs speaker embeddings to identify and extract multiple targets without label permutation ambiguity. To efficiently inform the speaker information to the extraction model, we propose a new speaker conditioning mechanism by designing an additional speaker branch for receiving external speaker embeddings. Experiments on 2-channel WHAMR! data show that the proposed system improves by 9% relative the source separation performance over a strong multi-channel baseline, and it increases the speech recognition accuracy by more than 16% relative over the same baseline.

* Accepted for ICASSP 2021 

Information Extraction - A User Guide

Feb 11, 1997
Hamish Cunningham

This technical memo describes Information Extraction from the point-of-view of a potential user of the technology. No knowledge of language processing is assumed. Information Extraction is a process which takes unseen texts as input and produces fixed-format, unambiguous data as output. This data may be used directly for display to users, or may be stored in a database or spreadsheet for later analysis, or may be used for indexing purposes in Information Retrieval applications. See also

* LaTeX2e with PostScript figures, 17 pages (figures replaced with smaller versions) 

Hybrid Attention-Based Transformer Block Model for Distant Supervision Relation Extraction

Mar 26, 2020
Yan Xiao, Yaochu Jin, Ran Cheng, Kuangrong Hao

With an exponential explosive growth of various digital text information, it is challenging to efficiently obtain specific knowledge from massive unstructured text information. As one basic task for natural language processing (NLP), relation extraction aims to extract the semantic relation between entity pairs based on the given text. To avoid manual labeling of datasets, distant supervision relation extraction (DSRE) has been widely used, aiming to utilize knowledge base to automatically annotate datasets. Unfortunately, this method heavily suffers from wrong labelling due to the underlying strong assumptions. To address this issue, we propose a new framework using hybrid attention-based Transformer block with multi-instance learning to perform the DSRE task. More specifically, the Transformer block is firstly used as the sentence encoder to capture syntactic information of sentences, which mainly utilizes multi-head self-attention to extract features from word level. Then, a more concise sentence-level attention mechanism is adopted to constitute the bag representation, aiming to incorporate valid information of each sentence to effectively represent the bag. Experimental results on the public dataset New York Times (NYT) demonstrate that the proposed approach can outperform the state-of-the-art algorithms on the evaluation dataset, which verifies the effectiveness of our model for the DSRE task.


DocReader: Bounding-Box Free Training of a Document Information Extraction Model

May 10, 2021
Shachar Klaiman, Marius Lehne

Information extraction from documents is a ubiquitous first step in many business applications. During this step, the entries of various fields must first be read from the images of scanned documents before being further processed and inserted into the corresponding databases. While many different methods have been developed over the past years in order to automate the above extraction step, they all share the requirement of bounding-box or text segment annotations of their training documents. In this work we present DocReader, an end-to-end neural-network-based information extraction solution which can be trained using solely the images and the target values that need to be read. The DocReader can thus leverage existing historical extraction data, completely eliminating the need for any additional annotations beyond what is naturally available in existing human-operated service centres. We demonstrate that the DocReader can reach and surpass other methods which require bounding-boxes for training, as well as provide a clear path for continual learning during its deployment in production.


Integrating diverse extraction pathways using iterative predictions for Multilingual Open Information Extraction

Oct 15, 2021
Bhushan Kotnis, Kiril Gashteovski, Carolin Lawrence, Daniel Oñoro Rubio, Vanesa Rodriguez-Tembras, Makoto Takamoto, Mathias Niepert

In this paper we investigate a simple hypothesis for the Open Information Extraction (OpenIE) task, that it may be easier to extract some elements of an triple if the extraction is conditioned on prior extractions which may be easier to extract. We successfully exploit this and propose a neural multilingual OpenIE system that iteratively extracts triples by conditioning extractions on different elements of the triple leading to a rich set of extractions. The iterative nature of MiLIE also allows for seamlessly integrating rule based extraction systems with a neural end-to-end system leading to improved performance. MiLIE outperforms SOTA systems on multiple languages ranging from Chinese to Galician thanks to it's ability of combining multiple extraction pathways. Our analysis confirms that it is indeed true that certain elements of an extraction are easier to extract than others. Finally, we introduce OpenIE evaluation datasets for two low resource languages namely Japanese and Galician.


Generating Informative CVE Description From ExploitDB Posts by Extractive Summarization

Jan 05, 2021
Jiamou Sun, Zhenchang Xing, Hao Guo, Deheng Ye, Xiaohong Li, Xiwei Xu, Liming Zhu

ExploitDB is one of the important public websites, which contributes a large number of vulnerabilities to official CVE database. Over 60\% of these vulnerabilities have high- or critical-security risks. Unfortunately, over 73\% of exploits appear publicly earlier than the corresponding CVEs, and about 40\% of exploits do not even have CVEs. To assist in documenting CVEs for the ExploitDB posts, we propose an open information method to extract 9 key vulnerability aspects (vulnerable product/version/component, vulnerability type, vendor, attacker type, root cause, attack vector and impact) from the verbose and noisy ExploitDB posts. The extracted aspects from an ExploitDB post are then composed into a CVE description according to the suggested CVE description templates, which is must-provided information for requesting new CVEs. Through the evaluation on 13,017 manually labeled sentences and the statistically sampling of 3,456 extracted aspects, we confirm the high accuracy of our extraction method. Compared with 27,230 reference CVE descriptions. Our composed CVE descriptions achieve high ROUGH-L (0.38), a longest common subsequence based metric for evaluating text summarization methods.


COfEE: A Comprehensive Ontology for Event Extraction from text, with an online annotation tool

Aug 01, 2021
Ali Balali, Masoud Asadpour, Seyed Hossein Jafari

Data is published on the web over time in great volumes, but majority of the data is unstructured, making it hard to understand and difficult to interpret. Information Extraction (IE) methods extract structured information from unstructured data. One of the challenging IE tasks is Event Extraction (EE) which seeks to derive information about specific incidents and their actors from the text. EE is useful in many domains such as building a knowledge base, information retrieval, summarization and online monitoring systems. In the past decades, some event ontologies like ACE, CAMEO and ICEWS were developed to define event forms, actors and dimensions of events observed in the text. These event ontologies still have some shortcomings such as covering only a few topics like political events, having inflexible structure in defining argument roles, lack of analytical dimensions, and complexity in choosing event sub-types. To address these concerns, we propose an event ontology, namely COfEE, that incorporates both expert domain knowledge, previous ontologies and a data-driven approach for identifying events from text. COfEE consists of two hierarchy levels (event types and event sub-types) that include new categories relating to environmental issues, cyberspace, criminal activity and natural disasters which need to be monitored instantly. Also, dynamic roles according to each event sub-type are defined to capture various dimensions of events. In a follow-up experiment, the proposed ontology is evaluated on Wikipedia events, and it is shown to be general and comprehensive. Moreover, in order to facilitate the preparation of gold-standard data for event extraction, a language-independent online tool is presented based on COfEE.