Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Semantic and Syntactic Enhanced Aspect Sentiment Triplet Extraction

Jun 07, 2021
Zhexue Chen, Hong Huang, Bang Liu, Xuanhua Shi, Hai Jin

Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from sentences, where each triplet includes an entity, its associated sentiment, and the opinion span explaining the reason for the sentiment. Most existing research addresses this problem in a multi-stage pipeline manner, which neglects the mutual information between such three elements and has the problem of error propagation. In this paper, we propose a Semantic and Syntactic Enhanced aspect Sentiment triplet Extraction model (S3E2) to fully exploit the syntactic and semantic relationships between the triplet elements and jointly extract them. Specifically, we design a Graph-Sequence duel representation and modeling paradigm for the task of ASTE: we represent the semantic and syntactic relationships between word pairs in a sentence by graph and encode it by Graph Neural Networks (GNNs), as well as modeling the original sentence by LSTM to preserve the sequential information. Under this setting, we further apply a more efficient inference strategy for the extraction of triplets. Extensive evaluations on four benchmark datasets show that S3E2 significantly outperforms existing approaches, which proves our S3E2's superiority and flexibility in an end-to-end fashion.

Access Paper or Ask Questions

Importance Estimation from Multiple Perspectives for Keyphrase Extraction

Nov 11, 2021
Mingyang Song, Liping Jing, Lin Xiao

Keyphrase extraction is a fundamental task in Natural Language Processing, which usually contains two main parts: candidate keyphrase extraction and keyphrase importance estimation. From the view of human understanding documents, we typically measure the importance of phrase according to its syntactic accuracy, information saliency, and concept consistency simultaneously. However, most existing keyphrase extraction approaches only focus on the part of them, which leads to biased results. In this paper, we propose a new approach to estimate the importance of keyphrase from multiple perspectives (called as \textit{KIEMP}) and further improve the performance of keyphrase extraction. Specifically, \textit{KIEMP} estimates the importance of phrase with three modules: a chunking module to measure its syntactic accuracy, a ranking module to check its information saliency, and a matching module to judge the concept (i.e., topic) consistency between phrase and the whole document. These three modules are seamlessly jointed together via an end-to-end multi-task learning model, which is helpful for three parts to enhance each other and balance the effects of three perspectives. Experimental results on six benchmark datasets show that \textit{KIEMP} outperforms the existing state-of-the-art keyphrase extraction approaches in most cases.

* 11 pages, 2 figures, Accepted by EMNLP 2021 (main conference) 
Access Paper or Ask Questions

Face Image Analysis using AAM, Gabor, LBP and WD features for Gender, Age, Expression and Ethnicity Classification

Mar 29, 2016
N. S. Lakshmiprabha

The growth in electronic transactions and human machine interactions rely on the information such as gender, age, expression and ethnicity provided by the face image. In order to obtain these information, feature extraction plays a major role. In this paper, retrieval of age, gender, expression and race information from an individual face image is analysed using different feature extraction methods. The performance of four major feature extraction methods such as Active Appearance Model (AAM), Gabor wavelets, Local Binary Pattern (LBP) and Wavelet Decomposition (WD) are analyzed for gender recognition, age estimation, expression recognition and racial recognition in terms of accuracy (recognition rate), time for feature extraction, neural training and time to test an image. Each of this recognition system is compared with four feature extractors on same dataset (training and validation set) to get a better understanding in its performance. Experiments carried out on FG-NET, Cohn-Kanade, PAL face database shows that each method has its own merits and demerits. Hence it is practically impossible to define a method which is best at all circumstances with less computational complexity. Further, a detailed comparison of age estimation and age estimation using gender information is provided along with a solution to overcome aging effect in case of gender recognition. An attempt has been made in obtaining all (i.e. gender, age range, expression and ethnicity) information from a test image in a single go.

Access Paper or Ask Questions

SEE: Syntax-aware Entity Embedding for Neural Relation Extraction

Jan 11, 2018
Zhengqiu He, Wenliang Chen, Zhenghua Li, Meishan Zhang, Wei Zhang, Min Zhang

Distant supervised relation extraction is an efficient approach to scale relation extraction to very large corpora, and has been widely used to find novel relational facts from plain text. Recent studies on neural relation extraction have shown great progress on this task via modeling the sentences in low-dimensional spaces, but seldom considered syntax information to model the entities. In this paper, we propose to learn syntax-aware entity embedding for neural relation extraction. First, we encode the context of entities on a dependency tree as sentence-level entity embedding based on tree-GRU. Then, we utilize both intra-sentence and inter-sentence attentions to obtain sentence set-level entity embedding over all sentences containing the focus entity pair. Finally, we combine both sentence embedding and entity embedding for relation classification. We conduct experiments on a widely used real-world dataset and the experimental results show that our model can make full use of all informative instances and achieve state-of-the-art performance of relation extraction.

* 8 pages, AAAI-2018 
Access Paper or Ask Questions

Bayesian Information Extraction Network

Jun 10, 2003
Leonid Peshkin, Avi Pfeffer

Dynamic Bayesian networks (DBNs) offer an elegant way to integrate various aspects of language in one model. Many existing algorithms developed for learning and inference in DBNs are applicable to probabilistic language modeling. To demonstrate the potential of DBNs for natural language processing, we employ a DBN in an information extraction task. We show how to assemble wealth of emerging linguistic instruments for shallow parsing, syntactic and semantic tagging, morphological decomposition, named entity recognition etc. in order to incrementally build a robust information extraction system. Our method outperforms previously published results on an established benchmark domain.

* Intl. Joint Conference on Artificial Intelligence, 2003 
* 6 pages 
Access Paper or Ask Questions

DeepDualMapper: A Gated Fusion Network for Automatic Map Extraction using Aerial Images and Trajectories

Feb 17, 2020
Hao Wu, Hanyuan Zhang, Xinyu Zhang, Weiwei Sun, Baihua Zheng, Yuning Jiang

Automatic map extraction is of great importance to urban computing and location-based services. Aerial image and GPS trajectory data refer to two different data sources that could be leveraged to generate the map, although they carry different types of information. Most previous works on data fusion between aerial images and data from auxiliary sensors do not fully utilize the information of both modalities and hence suffer from the issue of information loss. We propose a deep convolutional neural network called DeepDualMapper which fuses the aerial image and trajectory data in a more seamless manner to extract the digital map. We design a gated fusion module to explicitly control the information flows from both modalities in a complementary-aware manner. Moreover, we propose a novel densely supervised refinement decoder to generate the prediction in a coarse-to-fine way. Our comprehensive experiments demonstrate that DeepDualMapper can fuse the information of images and trajectories much more effectively than existing approaches, and is able to generate maps with higher accuracy.

* 7 pages, AAAI 2020 accepted paper 
Access Paper or Ask Questions

NaïveRole: Author-Contribution Extraction and Parsing from Biomedical Manuscripts

Dec 15, 2019
Dominika Tkaczyk, Andrew Collins, Joeran Beel

Information about the contributions of individual authors to scientific publications is important for assessing authors' achievements. Some biomedical publications have a short section that describes authors' roles and contributions. It is usually written in natural language and hence author contributions cannot be trivially extracted in a machine-readable format. In this paper, we present 1) A statistical analysis of roles in author contributions sections, and 2) Na\"iveRole, a novel approach to extract structured authors' roles from author contribution sections. For the first part, we used co-clustering techniques, as well as Open Information Extraction, to semi-automatically discover the popular roles within a corpus of 2,000 contributions sections from PubMed Central. The discovered roles were used to automatically build a training set for Na\"iveRole, our role extractor approach, based on Na\"ive Bayes. Na\"iveRole extracts roles with a micro-averaged precision of 0.68, recall of 0.48 and F1 of 0.57. It is, to the best of our knowledge, the first attempt to automatically extract author roles from research papers. This paper is an extended version of a previous poster published at JCDL 2018.

* 27th AIAI Irish Conference on Artificial Intelligence and Cognitive Science, 2019 
* arXiv admin note: substantial text overlap with arXiv:1802.01174 
Access Paper or Ask Questions