Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

REMOD: Relation Extraction for Modeling Online Discourse

Feb 22, 2021
Matthew Sumpter, Giovanni Luca Ciampaglia

The enormous amount of discourse taking place online poses challenges to the functioning of a civil and informed public sphere. Efforts to standardize online discourse data, such as ClaimReview, are making available a wealth of new data about potentially inaccurate claims, reviewed by third-party fact-checkers. These data could help shed light on the nature of online discourse, the role of political elites in amplifying it, and its implications for the integrity of the online information ecosystem. Unfortunately, the semi-structured nature of much of this data presents significant challenges when it comes to modeling and reasoning about online discourse. A key challenge is relation extraction, which is the task of determining the semantic relationships between named entities in a claim. Here we develop a novel supervised learning method for relation extraction that combines graph embedding techniques with path traversal on semantic dependency graphs. Our approach is based on the intuitive observation that knowledge of the entities along the path between the subject and object of a triple (e.g. Washington,_D.C.}, and United_States_of_America) provides useful information that can be leveraged for extracting its semantic relation (i.e. capitalOf). As an example of a potential application of this technique for modeling online discourse, we show that our method can be integrated into a pipeline to reason about potential misinformation claims.

* 11 pages, 5 figures 
Access Paper or Ask Questions

A Library Perspective on Nearly-Unsupervised Information Extraction Workflows in Digital Libraries

May 02, 2022
Hermann Kroll, Jan Pirklbauer, Florian Plötzky, Wolf-Tilo Balke

Information extraction can support novel and effective access paths for digital libraries. Nevertheless, designing reliable extraction workflows can be cost-intensive in practice. On the one hand, suitable extraction methods rely on domain-specific training data. On the other hand, unsupervised and open extraction methods usually produce not-canonicalized extraction results. This paper tackles the question how digital libraries can handle such extractions and if their quality is sufficient in practice. We focus on unsupervised extraction workflows by analyzing them in case studies in the domains of encyclopedias (Wikipedia), pharmacy and political sciences. We report on opportunities and limitations. Finally we discuss best practices for unsupervised extraction workflows.

* Accepted at JCDL2022, 11 pages, 1 figure 
Access Paper or Ask Questions

Closing the Gap: Joint De-Identification and Concept Extraction in the Clinical Domain

May 19, 2020
Lukas Lange, Heike Adel, Jannik Strötgen

Exploiting natural language processing in the clinical domain requires de-identification, i.e., anonymization of personal information in texts. However, current research considers de-identification and downstream tasks, such as concept extraction, only in isolation and does not study the effects of de-identification on other tasks. In this paper, we close this gap by reporting concept extraction performance on automatically anonymized data and investigating joint models for de-identification and concept extraction. In particular, we propose a stacked model with restricted access to privacy-sensitive information and a multitask model. We set the new state of the art on benchmark datasets in English (96.1% F1 for de-identification and 88.9% F1 for concept extraction) and Spanish (91.4% F1 for concept extraction).

* ACL 2020 
Access Paper or Ask Questions

Biographical: A Semi-Supervised Relation Extraction Dataset

May 02, 2022
Alistair Plum, Tharindu Ranasinghe, Spencer Jones, Constantin Orasan, Ruslan Mitkov

Extracting biographical information from online documents is a popular research topic among the information extraction (IE) community. Various natural language processing (NLP) techniques such as text classification, text summarisation and relation extraction are commonly used to achieve this. Among these techniques, RE is the most common since it can be directly used to build biographical knowledge graphs. RE is usually framed as a supervised machine learning (ML) problem, where ML models are trained on annotated datasets. However, there are few annotated datasets for RE since the annotation process can be costly and time-consuming. To address this, we developed Biographical, the first semi-supervised dataset for RE. The dataset, which is aimed towards digital humanities (DH) and historical research, is automatically compiled by aligning sentences from Wikipedia articles with matching structured data from sources including Pantheon and Wikidata. By exploiting the structure of Wikipedia articles and robust named entity recognition (NER), we match information with relatively high precision in order to compile annotated relation pairs for ten different relations that are important in the DH domain. Furthermore, we demonstrate the effectiveness of the dataset by training a state-of-the-art neural model to classify relation pairs, and evaluate it on a manually annotated gold standard set. Biographical is primarily aimed at training neural models for RE within the domain of digital humanities and history, but as we discuss at the end of this paper, it can be useful for other purposes as well.

* Accepted to ACM SIGIR 2022 
Access Paper or Ask Questions

A Span Extraction Approach for Information Extraction on Visually-Rich Documents

Jun 02, 2021
Tuan-Anh D. Nguyen, Hieu M. Vu, Nguyen Hong Son, Minh-Tien Nguyen

Information extraction (IE) from visually-rich documents (VRDs) has achieved SOTA performance recently thanks to the adaptation of Transformer-based language models, which demonstrates great potential of pre-training methods. In this paper, we present a new approach to improve the capability of language model pre-training on VRDs. Firstly, we introduce a new IE model that is query-based and employs the span extraction formulation instead of the commonly used sequence labelling approach. Secondly, to further extend the span extraction formulation, we propose a new training task which focuses on modelling the relationships between semantic entities within a document. This task enables the spans to be extracted recursively and can be used as both a pre-training objective as well as an IE downstream task. Evaluation on various datasets of popular business documents (invoices, receipts) shows that our proposed method can improve the performance of existing models significantly, while providing a mechanism to accumulate model knowledge from multiple downstream IE tasks.

Access Paper or Ask Questions

Comprehend Medical: a Named Entity Recognition and Relationship Extraction Web Service

Oct 15, 2019
Parminder Bhatia, Busra Celikkaya, Mohammed Khalilia, Selvan Senthivel

Comprehend Medical is a stateless and Health Insurance Portability and Accountability Act (HIPAA) eligible Named Entity Recognition (NER) and Relationship Extraction (RE) service launched under Amazon Web Services (AWS) trained using state-of-the-art deep learning models. Contrary to many existing open source tools, Comprehend Medical is scalable and does not require steep learning curve, dependencies, pipeline configurations, or installations. Currently, Comprehend Medical performs NER in five medical categories: Anatomy, Medical Condition, Medications, Protected Health Information (PHI) and Treatment, Test and Procedure (TTP). Additionally, the service provides relationship extraction for the detected entities as well as contextual information such as negation and temporality in the form of traits. Comprehend Medical provides two Application Programming Interfaces (API): 1) the NERe API which returns all the extracted named entities, their traits and the relationships between them and 2) the PHId API which returns just the protected health information contained in the text. Furthermore, Comprehend Medical is accessible through AWS Console, Java and Python Software Development Kit (SDK), making it easier for non-developers and developers to use.

* ICMLA 2019. $\copyright$ 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses in any current or future media including reprinting/republishing this material for advertising, promotional purposes, creating new collective works, for resale or redistribution to servers or lists, reuse of any copyrighted component of this work in other works. arXiv admin note: text overlap with arXiv:1812.05270 
Access Paper or Ask Questions

Speaker activity driven neural speech extraction

Feb 09, 2021
Marc Delcroix, Katerina Zmolikova, Tsubasa Ochiai, Keisuke Kinoshita, Tomohiro Nakatani

Target speech extraction, which extracts the speech of a target speaker in a mixture given auxiliary speaker clues, has recently received increased interest. Various clues have been investigated such as pre-recorded enrollment utterances, direction information, or video of the target speaker. In this paper, we explore the use of speaker activity information as an auxiliary clue for single-channel neural network-based speech extraction. We propose a speaker activity driven speech extraction neural network (ADEnet) and show that it can achieve performance levels competitive with enrollment-based approaches, without the need for pre-recordings. We further demonstrate the potential of the proposed approach for processing meeting-like recordings, where the speaker activity is obtained from a diarization system. We show that this simple yet practical approach can successfully extract speakers after diarization, which results in improved ASR performance, especially in high overlapping conditions, with a relative word error rate reduction of up to 25%.

* To appear in ICASSP 2021 
Access Paper or Ask Questions

Improving Distantly-Supervised Relation Extraction through BERT-based Label & Instance Embeddings

Feb 01, 2021
Despina Christou, Grigorios Tsoumakas

Distantly-supervised relation extraction (RE) is an effective method to scale RE to large corpora but suffers from noisy labels. Existing approaches try to alleviate noise through multi-instance learning and by providing additional information, but manage to recognize mainly the top frequent relations, neglecting those in the long-tail. We propose REDSandT (Relation Extraction with Distant Supervision and Transformers), a novel distantly-supervised transformer-based RE method, that manages to capture a wider set of relations through highly informative instance and label embeddings for RE, by exploiting BERT's pre-trained model, and the relationship between labels and entities, respectively. We guide REDSandT to focus solely on relational tokens by fine-tuning BERT on a structured input, including the sub-tree connecting an entity pair and the entities' types. Using the extracted informative vectors, we shape label embeddings, which we also use as attention mechanism over instances to further reduce noise. Finally, we represent sentences by concatenating relation and instance embeddings. Experiments in the NYT-10 dataset show that REDSandT captures a broader set of relations with higher confidence, achieving state-of-the-art AUC (0.424).

* 10 pages, 4 figures 
Access Paper or Ask Questions

Training privacy-preserving video analytics pipelines by suppressing features that reveal information about private attributes

Mar 05, 2022
Chau Yi Li, Andrea Cavallaro

Deep neural networks are increasingly deployed for scene analytics, including to evaluate the attention and reaction of people exposed to out-of-home advertisements. However, the features extracted by a deep neural network that was trained to predict a specific, consensual attribute (e.g. emotion) may also encode and thus reveal information about private, protected attributes (e.g. age or gender). In this work, we focus on such leakage of private information at inference time. We consider an adversary with access to the features extracted by the layers of a deployed neural network and use these features to predict private attributes. To prevent the success of such an attack, we modify the training of the network using a confusion loss that encourages the extraction of features that make it difficult for the adversary to accurately predict private attributes. We validate this training approach on image-based tasks using a publicly available dataset. Results show that, compared to the original network, the proposed PrivateNet can reduce the leakage of private information of a state-of-the-art emotion recognition classifier by 2.88% for gender and by 13.06% for age group, with a minimal effect on task accuracy.

Access Paper or Ask Questions

Biomedical Information Extraction for Disease Gene Prioritization

Nov 12, 2020
Jupinder Parmar, William Koehler, Martin Bringmann, Katharina Sophia Volz, Berk Kapicioglu

We introduce a biomedical information extraction (IE) pipeline that extracts biological relationships from text and demonstrate that its components, such as named entity recognition (NER) and relation extraction (RE), outperform state-of-the-art in BioNLP. We apply it to tens of millions of PubMed abstracts to extract protein-protein interactions (PPIs) and augment these extractions to a biomedical knowledge graph that already contains PPIs extracted from STRING, the leading structured PPI database. We show that, despite already containing PPIs from an established structured source, augmenting our own IE-based extractions to the graph allows us to predict novel disease-gene associations with a 20% relative increase in [email protected], an important step towards developing drug targets for uncured diseases.

* 4th Knowledge Representation and Reasoning Meets Machine Learning Workshop (KR2ML), at NeurIPS 2020 
Access Paper or Ask Questions