Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Image To Image Translation": models, code, and papers

Hindi Visual Genome: A Dataset for Multimodal English-to-Hindi Machine Translation

Jul 21, 2019
Shantipriya Parida, Ondřej Bojar, Satya Ranjan Dash

Visual Genome is a dataset connecting structured image information with English language. We present ``Hindi Visual Genome'', a multimodal dataset consisting of text and images suitable for English-Hindi multimodal machine translation task and multimodal research. We have selected short English segments (captions) from Visual Genome along with associated images and automatically translated them to Hindi with manual post-editing which took the associated images into account. We prepared a set of 31525 segments, accompanied by a challenge test set of 1400 segments. This challenge test set was created by searching for (particularly) ambiguous English words based on the embedding similarity and manually selecting those where the image helps to resolve the ambiguity. Our dataset is the first for multimodal English-Hindi machine translation, freely available for non-commercial research purposes. Our Hindi version of Visual Genome also allows to create Hindi image labelers or other practical tools. Hindi Visual Genome also serves in Workshop on Asian Translation (WAT) 2019 Multi-Modal Translation Task.

* 6 pages, 3 figures 
  
Access Paper or Ask Questions

A Unified Hyper-GAN Model for Unpaired Multi-contrast MR Image Translation

Jul 26, 2021
Heran Yang, Jian Sun, Liwei Yang, Zongben Xu

Cross-contrast image translation is an important task for completing missing contrasts in clinical diagnosis. However, most existing methods learn separate translator for each pair of contrasts, which is inefficient due to many possible contrast pairs in real scenarios. In this work, we propose a unified Hyper-GAN model for effectively and efficiently translating between different contrast pairs. Hyper-GAN consists of a pair of hyper-encoder and hyper-decoder to first map from the source contrast to a common feature space, and then further map to the target contrast image. To facilitate the translation between different contrast pairs, contrast-modulators are designed to tune the hyper-encoder and hyper-decoder adaptive to different contrasts. We also design a common space loss to enforce that multi-contrast images of a subject share a common feature space, implicitly modeling the shared underlying anatomical structures. Experiments on two datasets of IXI and BraTS 2019 show that our Hyper-GAN achieves state-of-the-art results in both accuracy and efficiency, e.g., improving more than 1.47 and 1.09 dB in PSNR on two datasets with less than half the amount of parameters.

* 11 pages, 4 figures, accepted by MICCAI 2021 
  
Access Paper or Ask Questions

SliderGAN: Synthesizing Expressive Face Images by Sliding 3D Blendshape Parameters

Aug 26, 2019
Evangelos Ververas, Stefanos Zafeiriou

Image-to-image (i2i) translation is the dense regression problem of learning how to transform an input image into an output using aligned image pairs. Remarkable progress has been made in i2i translation with the advent of Deep Convolutional Neural Networks (DCNNs) and particular using the learning paradigm of Generative Adversarial Networks (GANs). In the absence of paired images, i2i translation is tackled with one or multiple domain transformations (i.e., CycleGAN, StarGAN etc.). In this paper, we study a new problem, that of image-to-image translation, under a set of continuous parameters that correspond to a model describing a physical process. In particular, we propose the SliderGAN which transforms an input face image into a new one according to the continuous values of a statistical blendshape model of facial motion. We show that it is possible to edit a facial image according to expression and speech blendshapes, using sliders that control the continuous values of the blendshape model. This provides much more flexibility in various tasks, including but not limited to face editing, expression transfer and face neutralisation, comparing to models based on discrete expressions or action units.

  
Access Paper or Ask Questions

Label-Noise Robust Multi-Domain Image-to-Image Translation

May 06, 2019
Takuhiro Kaneko, Tatsuya Harada

Multi-domain image-to-image translation is a problem where the goal is to learn mappings among multiple domains. This problem is challenging in terms of scalability because it requires the learning of numerous mappings, the number of which increases proportional to the number of domains. However, generative adversarial networks (GANs) have emerged recently as a powerful framework for this problem. In particular, label-conditional extensions (e.g., StarGAN) have become a promising solution owing to their ability to address this problem using only a single unified model. Nonetheless, a limitation is that they rely on the availability of large-scale clean-labeled data, which are often laborious or impractical to collect in a real-world scenario. To overcome this limitation, we propose a novel model called the label-noise robust image-to-image translation model (RMIT) that can learn a clean label conditional generator even when noisy labeled data are only available. In particular, we propose a novel loss called the virtual cycle consistency loss that is able to regularize cyclic reconstruction independently of noisy labeled data, as well as we introduce advanced techniques to boost the performance in practice. Our experimental results demonstrate that RMIT is useful for obtaining label-noise robustness in various settings including synthetic and real-world noise.

  
Access Paper or Ask Questions

Product-oriented Machine Translation with Cross-modal Cross-lingual Pre-training

Aug 25, 2021
Yuqing Song, Shizhe Chen, Qin Jin, Wei Luo, Jun Xie, Fei Huang

Translating e-commercial product descriptions, a.k.a product-oriented machine translation (PMT), is essential to serve e-shoppers all over the world. However, due to the domain specialty, the PMT task is more challenging than traditional machine translation problems. Firstly, there are many specialized jargons in the product description, which are ambiguous to translate without the product image. Secondly, product descriptions are related to the image in more complicated ways than standard image descriptions, involving various visual aspects such as objects, shapes, colors or even subjective styles. Moreover, existing PMT datasets are small in scale to support the research. In this paper, we first construct a large-scale bilingual product description dataset called Fashion-MMT, which contains over 114k noisy and 40k manually cleaned description translations with multiple product images. To effectively learn semantic alignments among product images and bilingual texts in translation, we design a unified product-oriented cross-modal cross-lingual model (\upoc~) for pre-training and fine-tuning. Experiments on the Fashion-MMT and Multi30k datasets show that our model significantly outperforms the state-of-the-art models even pre-trained on the same dataset. It is also shown to benefit more from large-scale noisy data to improve the translation quality. We will release the dataset and codes at https://github.com/syuqings/Fashion-MMT.

* Accepted as Oral by ACMMM 2021 
  
Access Paper or Ask Questions

Unpaired Photo-to-Caricature Translation on Faces in the Wild

Jul 25, 2018
Ziqiang Zheng, Wang Chao, Zhibin Yu, Nan Wang, Haiyong Zheng, Bing Zheng

Recently, image-to-image translation has been made much progress owing to the success of conditional Generative Adversarial Networks (cGANs). And some unpaired methods based on cycle consistency loss such as DualGAN, CycleGAN and DiscoGAN are really popular. However, it's still very challenging for translation tasks with the requirement of high-level visual information conversion, such as photo-to-caricature translation that requires satire, exaggeration, lifelikeness and artistry. We present an approach for learning to translate faces in the wild from the source photo domain to the target caricature domain with different styles, which can also be used for other high-level image-to-image translation tasks. In order to capture global structure with local statistics while translation, we design a dual pathway model with one coarse discriminator and one fine discriminator. For generator, we provide one extra perceptual loss in association with adversarial loss and cycle consistency loss to achieve representation learning for two different domains. Also the style can be learned by the auxiliary noise input. Experiments on photo-to-caricature translation of faces in the wild show considerable performance gain of our proposed method over state-of-the-art translation methods as well as its potential real applications.

* 28 pages, 11 figures 
  
Access Paper or Ask Questions

Dialectical GAN for SAR Image Translation: From Sentinel-1 to TerraSAR-X

Jul 20, 2018
Dongyang Ao, Corneliu Octavian Dumitru, Gottfried Schwarz, Mihai Datcu

Contrary to optical images, Synthetic Aperture Radar (SAR) images are in different electromagnetic spectrum where the human visual system is not accustomed to. Thus, with more and more SAR applications, the demand for enhanced high-quality SAR images has increased considerably. However, high-quality SAR images entail high costs due to the limitations of current SAR devices and their image processing resources. To improve the quality of SAR images and to reduce the costs of their generation, we propose a Dialectical Generative Adversarial Network (Dialectical GAN) to generate high-quality SAR images. This method is based on the analysis of hierarchical SAR information and the "dialectical" structure of GAN frameworks. As a demonstration, a typical example will be shown where a low-resolution SAR image (e.g., a Sentinel-1 image) with large ground coverage is translated into a high-resolution SAR image (e.g., a TerraSAR-X image). Three traditional algorithms are compared, and a new algorithm is proposed based on a network framework by combining conditional WGAN-GP (Wasserstein Generative Adversarial Network - Gradient Penalty) loss functions and Spatial Gram matrices under the rule of dialectics. Experimental results show that the SAR image translation works very well when we compare the results of our proposed method with the selected traditional methods.

* 22 pages, 15 figures 
  
Access Paper or Ask Questions

Test-time image-to-image translation ensembling improves out-of-distribution generalization in histopathology

Jun 20, 2022
Marin Scalbert, Maria Vakalopoulou, Florent Couzinié-Devy

Histopathology whole slide images (WSIs) can reveal significant inter-hospital variability such as illumination, color or optical artifacts. These variations, caused by the use of different scanning protocols across medical centers (staining, scanner), can strongly harm algorithms generalization on unseen protocols. This motivates development of new methods to limit such drop of performances. In this paper, to enhance robustness on unseen target protocols, we propose a new test-time data augmentation based on multi domain image-to-image translation. It allows to project images from unseen protocol into each source domain before classifying them and ensembling the predictions. This test-time augmentation method results in a significant boost of performances for domain generalization. To demonstrate its effectiveness, our method has been evaluated on 2 different histopathology tasks where it outperforms conventional domain generalization, standard H&E specific color augmentation/normalization and standard test-time augmentation techniques. Our code is publicly available at https://gitlab.com/vitadx/articles/test-time-i2i-translation-ensembling.

* MICCAI2022 conference 
  
Access Paper or Ask Questions

U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

Jul 25, 2019
Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwanghee Lee

We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based methods which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters.

  
Access Paper or Ask Questions

An Optimized Architecture for Unpaired Image-to-Image Translation

Feb 13, 2018
Mohan Nikam

Unpaired Image-to-Image translation aims to convert the image from one domain (input domain A) to another domain (target domain B), without providing paired examples for the training. The state-of-the-art, Cycle-GAN demonstrated the power of Generative Adversarial Networks with Cycle-Consistency Loss. While its results are promising, there is scope for optimization in the training process. This paper introduces a new neural network architecture, which only learns the translation from domain A to B and eliminates the need for reverse mapping (B to A), by introducing a new Deviation-loss term. Furthermore, few other improvements to the Cycle-GAN are found and utilized in this new architecture, contributing to significantly lesser training duration.

* Accepted to be published in Springer Advances in Intelligent Systems and Computing (AISC) Series 11156. Accepted for presentation in Springer ICANI (International Conference on Advanced computing, Networking and Informatics)-2018 
  
Access Paper or Ask Questions
<<
26
27
28
29
30
31
32
33
34
35
36
37
38
>>