An attractive feature of spread spectrum technologies such as code division multiple access (CDMA) is that it is harder to intercept or jam signals, and this feature was lost when orthogonal frequency domain modulation prevailed over CDMA in wireless standards. Legacy spread carrier waveforms are not matched to delay and Doppler shifts characteristic of 6G wireless environments, and this makes equalization very challenging. Zak-OTFS modulation is a communication framework that parameterizes the wireless channel in the delay-Doppler (DD) domain, where the parameters map directly to physical attributes of the scatterers that comprise the scattering environment. Hence, the channel can be efficiently acquired and equalized. The Zak-OTFS carrier is a pulse in the DD domain, and the Zak transform converts it to a pulse train modulated by a tone (pulsone) in the time domain. The pulsone waveform is localized rather than spread, and it suffers from high PAPR. We describe how to transform Zak-OTFS into a spread spectrum communication system, where the spread carrier waveforms have low PAPR and are matched to the delay and Doppler characteristics of the wireless channel. This transformation is realized by a unitary transform that is a generalization of the discrete affine Fourier transform. The transform maps a pulsone to a time domain waveform which yields a CAZAC sequence after sampling. The family of CAZAC sequences includes the Zadoff-Chu sequences incorporated in LTE and 5G-NR standards. We describe the end-to-end time-domain transceiver signal processing, comprising channel estimation and data demodulation, for the proposed system. We quantify system performance through BER simulations using a six-path Veh-A channel model, showing that the proposed system achieves similar uncoded BER as pulsone-based Zak-OTFS, where the PAPR of each spread carrier waveform is only 3.58 dB.