Large language models (LLMs) are increasingly used for academic expert recommendation. Existing audits typically evaluate model outputs in isolation, largely ignoring end-user inference-time interventions. As a result, it remains unclear whether failures such as refusals, hallucinations, and uneven coverage stem from model choice or deployment decisions. We introduce LLMScholarBench, a benchmark for auditing LLM-based scholar recommendation that jointly evaluates model infrastructure and end-user interventions across multiple tasks. LLMScholarBench measures both technical quality and social representation using nine metrics. We instantiate the benchmark in physics expert recommendation and audit 22 LLMs under temperature variation, representation-constrained prompting, and retrieval-augmented generation (RAG) via web search. Our results show that end-user interventions do not yield uniform improvements but instead redistribute error across dimensions. Higher temperature degrades validity, consistency, and factuality. Representation-constrained prompting improves diversity at the expense of factuality, while RAG primarily improves technical quality while reducing diversity and parity. Overall, end-user interventions reshape trade-offs rather than providing a general fix. We release code and data that can be adapted to other disciplines by replacing domain-specific ground truth and metrics.