Safety evaluation for advanced AI systems implicitly assumes that behavior observed under evaluation is predictive of behavior in deployment. This assumption becomes fragile for agents with situational awareness, which may exploitregime leakage-informational cues distinguishing evaluation from deployment-to implement conditional policies such as sycophancy and sleeper agents, which preserve compliance under oversight while defecting in deployment-like regimes. We reframe alignment evaluation as a problem of information flow under partial observability. Within this framework, we show that divergence between evaluation-time and deployment-time behavior is bounded by the mutual information between internal representations and the regime variable. Motivated by this result, we study regime-blind mechanisms: training-time interventions that reduce the extractability of regime information at decision-relevant internal representations via adversarial invariance. We evaluate this approach on a base, open-weight language model across two fully characterized failure modes -scientific sycophancy and temporal sleeper agents. Regime-blind training suppresses regime-conditioned behavior in both evaluated cases without measurable loss of task utility, but with qualitatively different dynamics: sycophancy exhibits a sharp representational and behavioral transition at low intervention strength, whereas sleeper-agent behavior requires substantially stronger pressure and does not exhibit a clean collapse of regime decodability. These results demonstrate that representational invariance is a meaningful but fundamentally limited control lever, whose effectiveness depends on how regime information is embedded in the policy. We argue that behavioral evaluation should be complemented with white-box diagnostics of regime awareness and information flow.