Federated Learning (FL) enables the training of machine learning models across decentralized clients while preserving data privacy. However, the presence of anomalous or corrupted clients - such as those with faulty sensors or non representative data distributions - can significantly degrade model performance. Detecting such clients without accessing raw data remains a key challenge. We propose WAFFLE (Wavelet and Fourier representations for Federated Learning) a detection algorithm that labels malicious clients {\it before training}, using locally computed compressed representations derived from either the Wavelet Scattering Transform (WST) or the Fourier Transform. Both approaches provide low-dimensional, task-agnostic embeddings suitable for unsupervised client separation. A lightweight detector, trained on a distillated public dataset, performs the labeling with minimal communication and computational overhead. While both transforms enable effective detection, WST offers theoretical advantages, such as non-invertibility and stability to local deformations, that make it particularly well-suited to federated scenarios. Experiments on benchmark datasets show that our method improves detection accuracy and downstream classification performance compared to existing FL anomaly detection algorithms, validating its effectiveness as a pre-training alternative to online detection strategies.