Existing multi-label ranking (MLR) frameworks only exploit information deduced from the bipartition of labels into positive and negative sets. Therefore, they do not benefit from ranking among positive labels, which is the novel MLR approach we introduce in this paper. We propose UniMLR, a new MLR paradigm that models implicit class relevance/significance values as probability distributions using the ranking among positive labels, rather than treating them as equally important. This approach unifies ranking and classification tasks associated with MLR. Additionally, we address the challenges of scarcity and annotation bias in MLR datasets by introducing eight synthetic datasets (Ranked MNISTs) generated with varying significance-determining factors, providing an enriched and controllable experimental environment. We statistically demonstrate that our method accurately learns a representation of the positive rank order, which is consistent with the ground truth and proportional to the underlying significance values. Finally, we conduct comprehensive empirical experiments on both real-world and synthetic datasets, demonstrating the value of our proposed framework.