The proliferation of sophisticated generative AI models has significantly escalated the threat of synthetic manipulations in identity documents, particularly through face swapping and text inpainting attacks. This paper presents TwoHead-SwinFPN, a unified deep learning architecture that simultaneously performs binary classification and precise localization of manipulated regions in ID documents. Our approach integrates a Swin Transformer backbone with Feature Pyramid Network (FPN) and UNet-style decoder, enhanced with Convolutional Block Attention Module (CBAM) for improved feature representation. The model employs a dual-head architecture for joint optimization of detection and segmentation tasks, utilizing uncertainty-weighted multi-task learning. Extensive experiments on the FantasyIDiap dataset demonstrate superior performance with 84.31\% accuracy, 90.78\% AUC for classification, and 57.24\% mean Dice score for localization. The proposed method achieves an F1-score of 88.61\% for binary classification while maintaining computational efficiency suitable for real-world deployment through FastAPI implementation. Our comprehensive evaluation includes ablation studies, cross-device generalization analysis, and detailed performance assessment across 10 languages and 3 acquisition devices.