Abstract reasoning problems pose significant challenges to artificial intelligence algorithms, demanding cognitive capabilities beyond those required for perception tasks. This study introduces the Triple-CFN approach to tackle the Bongard-Logo problem, achieving notable reasoning accuracy by implicitly reorganizing the concept space of conflicting instances. Additionally, the Triple-CFN paradigm proves effective for the RPM problem with necessary modifications, yielding competitive results. To further enhance performance on the RPM issue, we develop the Meta Triple-CFN network, which explicitly structures the problem space while maintaining interpretability on progressive patterns. The success of Meta Triple-CFN is attributed to its paradigm of modeling the conceptual space, equivalent to normalizing reasoning information. Based on this ideology, we introduce the Re-space layer, enhancing the performance of both Meta Triple-CFN and Triple-CFN. This paper aims to contribute to advancements in machine intelligence by exploring innovative network designs for addressing abstract reasoning problems, paving the way for further breakthroughs in this domain.