In the context of smart city transportation, efficient matching of taxi supply with passenger demand requires real-time integration of urban traffic network data and mobility patterns. Conventional taxi hotspot prediction models often rely solely on historical demand, overlooking dynamic influences such as traffic congestion, road incidents, and public events. This paper presents a traffic-aware, graph-based reinforcement learning (RL) framework for optimal taxi placement in metropolitan environments. The urban road network is modeled as a graph where intersections represent nodes, road segments serve as edges, and node attributes capture historical demand, event proximity, and real-time congestion scores obtained from live traffic APIs. Graph Neural Network (GNN) embeddings are employed to encode spatial-temporal dependencies within the traffic network, which are then used by a Q-learning agent to recommend optimal taxi hotspots. The reward mechanism jointly optimizes passenger waiting time, driver travel distance, and congestion avoidance. Experiments on a simulated Delhi taxi dataset, generated using real geospatial boundaries and historic ride-hailing request patterns, demonstrate that the proposed model reduced passenger waiting time by about 56% and reduced travel distance by 38% compared to baseline stochastic selection. The proposed approach is adaptable to multi-modal transport systems and can be integrated into smart city platforms for real-time urban mobility optimization.