The rapid growth of large language models has spurred significant interest in model compression as a means to enhance their accessibility and practicality. While extensive research has explored model compression through the lens of safety, findings suggest that safety-aligned models often lose elements of trustworthiness post-compression. Simultaneously, the field of mechanistic interpretability has gained traction, with notable discoveries, such as the identification of a single direction in the residual stream mediating refusal behaviors across diverse model architectures. In this work, we investigate the safety of compressed models by examining the mechanisms of refusal, adopting a novel interpretability-driven perspective to evaluate model safety. Furthermore, leveraging insights from our interpretability analysis, we propose a lightweight, computationally efficient method to enhance the safety of compressed models without compromising their performance or utility.