Wireless underground sensor networks (WUSNs), which enable real-time sensing and monitoring of underground resources by underground devices (UDs), hold great promise for delivering substantial social and economic benefits across various verticals. However, due to the harsh subterranean environment, scarce network resources, and restricted communication coverage, WUSNs face significant challenges in supporting sustainable massive machine-type communications (mMTC), particularly in remote, disaster-stricken, and hard-to-reach areas. To complement this, we conceptualize in this study a novel space-air-ground-underground integrated network (SAGUIN) architecture that seamlessly incorporates satellite systems, aerial platforms, terrestrial networks, and underground communications. On this basis, we integrate LoRaWAN and wireless energy transfer (WET) technologies into SAGUIN to enable sustainable subterranean mMTC. We begin by reviewing the relevant technical background and presenting the architecture and implementation challenges of SAGUIN. Then, we employ simulations to model a remote underground pipeline monitoring scenario to evaluate the feasibility and performance of SAGUIN based on LoRaWAN and WET technologies, focusing on the effects of parameters such as underground conditions, time allocation, LoRaWAN spread factor (SF) configurations, reporting periods, and harvested energy levels. Our results evidence that the proposed SAGUIN system, when combined with the derived time allocation strategy and an appropriate SF, can effectively extend the operational lifetime of UDs, thereby facilitating sustainable subterranean mMTC. Finally, we pinpoint key challenges and future research directions for SAGUIN.