Efficiently adapting large Vision-Language Models (VLMs) like CLIP for few-shot learning poses challenges in balancing pre-trained knowledge retention and task-specific adaptation. Existing methods often overlook valuable structural information within the VLM's latent space. We introduce a topology-aware tuning approach integrating Representation Topology Divergence (RTD) into the Task Residual (TR) framework. By explicitly aligning the topological structures of visual and text representations using a combined RTD and Cross-Entropy loss, while freezing base VLM encoders, our method enhances few-shot performance. We optimize only lightweight Task Residual parameters, effectively leveraging topological information. Across 6 diverse benchmark datasets, our approach demonstrates significant gains, achieving an average accuracy improvement of 1-2\% over relevant baseline methods in few-shot settings. This work presents an effective strategy to boost VLM few-shot capabilities by incorporating topological alignment.