This technical report introduces innovative optimizations for Kaldi-based Automatic Speech Recognition (ASR) systems, focusing on acoustic model enhancement, hyperparameter tuning, and language model efficiency. We developed a custom Conformer block integrated with a multistream TDNN-F structure, enabling superior feature extraction and temporal modeling. Our approach includes advanced data augmentation techniques and dynamic hyperparameter optimization to boost performance and reduce overfitting. Additionally, we propose robust strategies for language model management, employing Bayesian optimization and $n$-gram pruning to ensure relevance and computational efficiency. These systematic improvements significantly elevate ASR accuracy and robustness, outperforming existing methods and offering a scalable solution for diverse speech recognition scenarios. This report underscores the importance of strategic optimizations in maintaining Kaldi's adaptability and competitiveness in rapidly evolving technological landscapes.