This work proposes that a vast majority of classical technical indicators in financial analysis are, in essence, special cases of neural networks with fixed and interpretable weights. It is shown that nearly all such indicators, such as moving averages, momentum-based oscillators, volatility bands, and other commonly used technical constructs, can be reconstructed topologically as modular neural network components. Technical Indicator Networks (TINs) are introduced as a general neural architecture that replicates and structurally upgrades traditional indicators by supporting n-dimensional inputs such as price, volume, sentiment, and order book data. By encoding domain-specific knowledge into neural structures, TINs modernize the foundational logic of technical analysis and propel algorithmic trading into a new era, bridging the legacy of proven indicators with the potential of contemporary AI systems.