Humans excel at spatial reasoning tasks like Tangram puzzle assembly through cognitive processes involving mental rotation, iterative refinement, and visual feedback. Inspired by how humans solve Tangram puzzles through trial-and-error, observation, and correction, we design a framework that models these human cognitive mechanisms. However, comprehensive experiments across five representative Vision-Language Models (VLMs) reveal systematic failures in continuous geometric reasoning: average IoU of only 0.41 on single-piece tasks, dropping to 0.23 on two-piece composition, far below human performance where children can complete Tangram tasks successfully. This paper addresses a fundamental challenge in self-improving AI: can models iteratively refine their predictions at test time without parameter updates? We introduce a test-time self-refinement framework that combines in-context learning (ICL) with reward-guided feedback loops, inspired by human cognitive processes. Our training-free verifier-refiner agent applies recursive refinement loops that iteratively self-refine predictions based on geometric consistency feedback, achieving IoU improvements from 0.63 to 0.932 on medium-triangle cases without any model retraining. This demonstrates that incorporating human-inspired iterative refinement mechanisms through ICL and reward loops can substantially enhance geometric reasoning in VLMs, moving self-improving AI from promise to practice in continuous spatial domains. Our work is available at this anonymous link https://anonymous.4open.science/r/TangramVLM-F582/.