Unequal error protection (UEP) coding that enables differentiated reliability levels within a transmitted message is essential for modern communication systems. Autoencoder (AE)-based code designs have shown promise in the context of learned equal error protection (EEP) coding schemes. However, their application to UEP remains largely unexplored, particularly at intermediate blocklengths, due to the increasing complexity of AE-based models. Inspired by the proven effectiveness of superposition coding and successive interference cancellation (SIC) decoding in conventional UEP schemes, we propose a structured AE-based architecture that extends AE-based UEP codes to substantially larger blocklengths while maintaining efficient training. By structuring encoding and decoding into smaller AE subblocks, our method provides a flexible framework for fine-tuning UEP reliability levels while adapting to diverse system parameters. Numerical results show that the proposed approach improves over established achievability bounds of randomized superposition coding-based UEP schemes with SIC decoding, making the proposed structured AE-based UEP codes a scalable and efficient solution for next-generation networks.