In recent literature, when modeling for information freshness in remote estimation settings, estimators have been mainly restricted to the class of martingale estimators, meaning the remote estimate at any time is equal to the most recently received update. This is mainly due to its simplicity and ease of analysis. However, these martingale estimators are far from optimal in some cases, especially in pull-based update systems. For such systems, maximum aposteriori probability (MAP) estimators are optimum, but can be challenging to analyze. Here, we introduce a new class of estimators, called structured estimators, which retain useful characteristics from a MAP estimate while still being analytically tractable. Our proposed estimators move seamlessly from a martingale estimator to a MAP estimator.