Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.