Alignment audits aim to robustly identify hidden goals from strategic, situationally aware misaligned models. Despite this threat model, existing auditing methods have not been systematically stress-tested against deception strategies. We address this gap, implementing an automatic red-team pipeline that generates deception strategies (in the form of system prompts) tailored to specific white-box and black-box auditing methods. Stress-testing assistant prefills, user persona sampling, sparse autoencoders, and token embedding similarity methods against secret-keeping model organisms, our automatic red-team pipeline finds prompts that deceive both the black-box and white-box methods into confident, incorrect guesses. Our results provide the first documented evidence of activation-based strategic deception, and suggest that current black-box and white-box methods would not be robust to a sufficiently capable misaligned model.