Collaborative robots, or cobots, are increasingly integrated into various industrial and service settings to work efficiently and safely alongside humans. However, for effective human-robot collaboration, robots must reason based on human factors such as motivation level and aggression level. This paper proposes an approach for decision-making in human-robot collaborative (HRC) environments utilizing stochastic modeling. By leveraging probabilistic models and control strategies, the proposed method aims to anticipate human actions and emotions, enabling cobots to adapt their behavior accordingly. So far, most of the research has been done to detect the intentions of human co-workers. This paper discusses the theoretical framework, implementation strategies, simulation results, and potential applications of the bilateral collaboration approach for safety and efficiency in collaborative robotics.