Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:When one observes a sequence of variables $(x_1, y_1), ..., (x_n, y_n)$, conformal prediction is a methodology that allows to estimate a confidence set for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the data is exchangeable. While appealing, the computation of such set turns out to be infeasible in general, e.g. when the unknown variable $y_{n+1}$ is continuous. In this paper, we combine conformal prediction techniques with algorithmic stability bounds to derive a prediction set computable with a single model fit. We perform some numerical experiments that illustrate the tightness of our estimation when the sample size is sufficiently large.