Inference-time steering has emerged as a promising paradigm for controlling language models (LMs) without the cost of retraining. However, standard approaches typically rely on activation addition, a geometric operation that inevitably alters the magnitude of hidden representations. This raises concerns about representation collapse and degradation of open-ended generation capabilities. In this work, we explore Spherical Steering, a training-free primitive that resolves this trade-off through activation rotation. Rather than shifting activations with a fixed vector, our method rotates them along a geodesic toward a target direction, guiding the activation toward the target concept while preserving the integrity of the signal. To further enhance adaptivity, we incorporate a confidence gate that dynamically modulates steering strength based on input uncertainty. Extensive experiments across multiple-choice benchmarks demonstrate that Spherical Steering significantly outperforms addition-based baselines (notably by +10% on TruthfulQA, COPA, and Storycloze), while simultaneously maintaining the model's general open-ended generation quality. This work highlights the value of geometric consistency, suggesting that norm-preserving rotation is a robust and effective primitive for precise inference-time control.