Optimal sensor placement (OSP) is critical for efficient, accurate monitoring, control, and inference in complex real-world systems. We propose a machine-learning-based feature attribution framework to identify OSP for the prediction of quantities of interest. Feature attribution quantifies input contributions to a model's output; however, it struggles with highly correlated input data often encountered in real-world applications. To address this, we propose a Correlation-Aware Attribution Framework (CAAF), which introduces a clustering step before performing feature attribution to reduce redundancy and enhance generalizability. We first illustrate the core principles of the proposed framework through a series of validation cases, then demonstrate its effectiveness in real-world dynamical systems, such as structural health monitoring, airfoil lift prediction, and wall-normal velocity estimation for turbulent channel flow. The results show that the CAAF outperforms alternative approaches that typically struggle due to the presence of nonlinear dynamics, chaotic behavior, and multi-scale interactions, and enables the effective application of feature attribution for identifying OSP in real-world environments.