This paper offers a comprehensive analysis of recent advancements in video inpainting techniques, a critical subset of computer vision and artificial intelligence. As a process that restores or fills in missing or corrupted portions of video sequences with plausible content, video inpainting has evolved significantly with the advent of deep learning methodologies. Despite the plethora of existing methods and their swift development, the landscape remains complex, posing challenges to both novices and established researchers. Our study deconstructs major techniques, their underpinning theories, and their effective applications. Moreover, we conduct an exhaustive comparative study, centering on two often-overlooked dimensions: visual quality and computational efficiency. We adopt a human-centric approach to assess visual quality, enlisting a panel of annotators to evaluate the output of different video inpainting techniques. This provides a nuanced qualitative understanding that complements traditional quantitative metrics. Concurrently, we delve into the computational aspects, comparing inference times and memory demands across a standardized hardware setup. This analysis underscores the balance between quality and efficiency: a critical consideration for practical applications where resources may be constrained. By integrating human validation and computational resource comparison, this survey not only clarifies the present landscape of video inpainting techniques but also charts a course for future explorations in this vibrant and evolving field.