We propose a constrained latent optimization method for reward-guided generation that preserves white Gaussian noise characteristics with negligible overhead. Test-time latent optimization can unlock substantially better reward-guided generations from pretrained generative models, but it is prone to reward hacking that degrades quality and also too slow for practical use. In this work, we make test-time optimization both efficient and reliable by replacing soft regularization with hard white Gaussian noise constraints enforced via projected gradient ascent. Our method applies a closed-form projection after each update to keep the latent vector explicitly noise-like throughout optimization, preventing the drift that leads to unrealistic artifacts. This enforcement adds minimal cost: the projection matches the $O(N \log N)$ complexity of standard algorithms such as sorting or FFT and does not practically increase wall-clock time. In experiments, our approach reaches a comparable Aesthetic Score using only 30% of the wall-clock time required by the SOTA regularization-based method, while preventing reward hacking.