In this paper we train a transformer using differential privacy (DP) for language modeling in SwiftKey. We run multiple experiments to balance the trade-off between the model size, run-time speed and accuracy. We show that we get small and consistent gains in the next-word-prediction and accuracy with graceful increase in memory and speed compared to the production GRU. This is obtained by scaling down a GPT2 architecture to fit the required size and a two stage training process that builds a seed model on general data and DP finetunes it on typing data. The transformer is integrated using ONNX offering both flexibility and efficiency.