Recently, pinching antennas have attracted significant research interest due to their capability to reconfigure wireless channels as well as their array configuration flexibility. This letter focuses on how these features can be used to support integrated sensing and communications (ISAC) from the Cramer Rao lower bound (CRLB) perspective. In particular, the CRLB achieved by pinching antennas is first derived and then compared to that of conventional antennas. The presented analytical and simulation results demonstrate that using pinching antennas can significantly reduce CRLB and, hence, enhance positioning accuracy. In addition, this letter also reveals that the low-cost and reconfigurability features of pinching antennas can be utilized to realize flexible user-centric positioning.