https://github.com/erkara/fem-pi-deeponet.
We present a hybrid framework that couples finite element methods (FEM) with physics-informed DeepONet to model fluid transport in porous media from sharp, localized Gaussian sources. The governing system consists of a steady-state Darcy flow equation and a time-dependent convection-diffusion equation. Our approach solves the Darcy system using FEM and transfers the resulting velocity field to a physics-informed DeepONet, which learns the mapping from source functions to solute concentration profiles. This modular strategy preserves FEM-level accuracy in the flow field while enabling fast inference for transport dynamics. To handle steep gradients induced by sharp sources, we introduce an adaptive sampling strategy for trunk collocation points. Numerical experiments demonstrate that our method is in good agreement with the reference solutions while offering orders of magnitude speedups over traditional solvers, making it suitable for practical applications in relevant scenarios. Implementation of our proposed method is available at