https://github.com/dess-mannheim/european_parliament_simulation.
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at