Current analysis of additive manufactured niobium-based copper alloys relies on hand annotation due to varying contrast, noise, and image artifacts present in micrographs, slowing iteration speed in alloy development. We present a filtering and segmentation algorithm for detecting precipitates in FIB cross-section micrographs, optimized using linear genetic programming (LGP), which accounts for the various artifacts. To this end, the optimization environment uses a domain-specific language for image processing to iterate on solutions. Programs in this language are a list of image-filtering blocks with tunable parameters that sequentially process an input image, allowing for reliable generation and mutation by a genetic algorithm. Our environment produces optimized human-interpretable MATLAB code representing an image filtering pipeline. Under ideal conditions--a population size of 60 and a maximum program length of 5 blocks--our system was able to find a near-human accuracy solution with an average evaluation error of 1.8% when comparing segmentations pixel-by-pixel to a human baseline using an XOR error evaluation. Our automation work enabled faster iteration cycles and furthered exploration of the material composition and processing space: our optimized pipeline algorithm processes a 3.6 megapixel image in about 2 seconds on average. This ultimately enables convergence on strong, low-activation, precipitation hardened copper alloys for additive manufactured fusion reactor parts.