Code review is a key practice in software engineering, ensuring quality and collaboration. However, industrial Merge Request (MR) workflows often deviate from standardized review processes, with many MRs serving non-review purposes (e.g., drafts, rebases, or dependency updates). We term these cases deviations and hypothesize that ignoring them biases analytics and undermines ML models for review analysis. We identify seven deviation categories, occurring in 37.02% of MRs, and propose a few-shot learning detection method (91% accuracy). By excluding deviations, ML models predicting review completion time improve performance in 53.33% of cases (up to 2.25x) and exhibit significant shifts in feature importance (47% overall, 60% top-*k*). Our contributions include: (1) a taxonomy of MR deviations, (2) an AI-driven detection approach, and (3) empirical evidence of their impact on ML-based review analytics. This work aids practitioners in optimizing review efforts and ensuring reliable insights.