The Polyak stepsize has been proven to be a fundamental stepsize in convex optimization, giving near optimal gradient descent rates across a wide range of assumptions. The universality of the Polyak stepsize has also inspired many stochastic variants, with theoretical guarantees and strong empirical performance. Despite the many theoretical results, our understanding of the convergence properties and shortcomings of the Polyak stepsize or its variants is both incomplete and fractured across different analyses. We propose a new, unified, and simple perspective for the Polyak stepsize and its variants as gradient descent on a surrogate loss. We show that each variant is equivalent to minimize a surrogate function with stepsizes that adapt to a guaranteed local curvature. Our general surrogate loss perspective is then used to provide a unified analysis of existing variants across different assumptions. Moreover, we show a number of negative results proving that the non-convergence results in some of the upper bounds is indeed real.