Large Language Models (LLMs) are increasingly used to simulate population responses, a method known as ``Silicon Sampling''. However, responses to socially sensitive questions frequently exhibit Social Desirability Bias (SDB), diverging from real human data toward socially acceptable answers. Existing studies on social desirability bias in LLM-based sampling remain limited. In this work, we investigate whether minimal, psychologically grounded prompt wording can mitigate this bias and improve alignment between silicon and human samples. We conducted a study using data from the American National Election Study (ANES) on three LLMs from two model families: the open-source Llama-3.1 series and GPT-4.1-mini. We first replicate a baseline silicon sampling study, confirming the persistent Social Desirability Bias. We then test four prompt-based mitigation methods: \emph{reformulated} (neutral, third-person phrasing), \emph{reverse-coded} (semantic inversion), and two meta-instructions, \emph{priming} and \emph{preamble}, respectively encouraging analytics and sincerity. Alignment with ANES is evaluated using Jensen-Shannon Divergence with bootstrap confidence intervals. Our results demonstrate that reformulated prompts most effectively improve alignment by reducing distribution concentration on socially acceptable answers and achieving distributions closer to ANES. Reverse-coding produced mixed results across eligible items, while the Priming and Preamble encouraged response uniformity and showed no systematic benefit for bias mitigation. Our findings validate the efficacy of prompt-based framing controls in mitigating inherent Social Desirability Bias in LLMs, providing a practical path toward more representative silicon samples.