Cognitive radio networks (CRNs) are acknowledged for their ability to tackle the issue of spectrum under-utilization. In the realm of CRNs, this paper investigates the energy efficiency issue and addresses the critical challenge of optimizing system reliability for overlay CRN access mode. Randomly dispersed secondary users (SUs) serving as relays for primary users (PUs) are considered, in which one of these relays is designated to harvest energy through the time switching-energy harvesting (EH) protocol. Moreover, this relay amplifies-and-forwards (AF) the PU's messages and broadcasts them along with its own across cascaded $\kappa$-$\mu$ fading channels. The power splitting protocol is another EH approach utilized by the SU and PU receivers to enhance the amount of energy in their storage devices. In addition, the SU transmitters and the SU receiver are deployed with multiple antennas for reception and apply the maximal ratio combining approach. The outage probability is utilized to assess both networks' reliability. Then, an energy efficiency evaluation is performed to determine the effectiveness of EH on the system. Finally, an optimization problem is provided with the goal of maximizing the data rate of the SUs by optimizing the time switching and the power allocation parameters of the SU relay.