Linked Data and labelled property graphs (LPG) are two data management approaches with complementary strengths and weaknesses, making their integration beneficial for sharing datasets and supporting software ecosystems. In this paper, we introduce rdf2pg, an extensible framework for mapping RDF data to semantically equivalent LPG formats and data-bases. Utilising this framework, we perform a comparative analysis of three popular graph databases - Virtuoso, Neo4j, and ArcadeDB - and the well-known graph query languages SPARQL, Cypher, and Gremlin. Our qualitative and quantitative as-sessments underline the strengths and limitations of these graph database technologies. Additionally, we highlight the potential of rdf2pg as a versatile tool for enabling polyglot access to knowledge graphs, aligning with established standards of Linked Data and the Semantic Web.