Adapting machine translation systems in the real world is a difficult problem. In contrast to offline training, users cannot provide the type of fine-grained feedback typically used for improving the system. Moreover, users have different translation needs, and even a single user's needs may change over time. In this work we take a different approach, treating the problem of adapting as one of selection. Instead of adapting a single system, we train many translation systems using different architectures and data partitions. Using bandit learning techniques on simulated user feedback, we learn a policy to choose which system to use for a particular translation task. We show that our approach can (1) quickly adapt to address domain changes in translation tasks, (2) outperform the single best system in mixed-domain translation tasks, and (3) make effective instance-specific decisions when using contextual bandit strategies.