https://github.com/csplevuanh/pylenm_extension.
Monitored Natural Attenuation (MNA) is gaining prominence as an effective method for managing soil and groundwater contamination due to its cost-efficiency and minimal environmental disruption. Despite its benefits, MNA necessitates extensive groundwater monitoring to ensure that contaminant levels decrease to meet safety standards. This study expands the capabilities of PyLEnM, a Python package designed for long-term environmental monitoring, by incorporating new algorithms to enhance its predictive and analytical functionalities. We introduce methods to estimate the timeframe required for contaminants like Sr-90 and I-129 to reach regulatory safety standards using linear regression and to forecast future contaminant levels with the Bidirectional Long Short-Term Memory (Bi-LSTM) networks. Additionally, Random Forest regression is employed to identify factors influencing the time to reach safety standards. Our methods are illustrated using data from the Savannah River Site (SRS) F-Area, where preliminary findings reveal a notable downward trend in contaminant levels, with variability linked to initial concentrations and groundwater flow dynamics. The Bi-LSTM model effectively predicts contaminant concentrations for the next four years, demonstrating the potential of advanced time series analysis to improve MNA strategies and reduce reliance on manual groundwater sampling. The code, along with its usage instructions, validation, and requirements, is available at: