A fundamental open problem in learning theory is to characterize the best-case teaching dimension $\operatorname{TS}_{\min}$ of a concept class $\mathcal{C}$ with finite VC dimension $d$. Resolving this problem will, in particular, settle the conjectured upper bound on Recursive Teaching Dimension posed by [Simon and Zilles; COLT 2015]. Prior work used a natural greedy algorithm to construct teaching sets recursively, thereby proving upper bounds on $\operatorname{TS}_{\min}$, with the best known bound being $O(d^2)$ [Hu, Wu, Li, and Wang; COLT 2017]. In each iteration, this greedy algorithm chooses to add to the teaching set the $k$ labeled points that restrict the concept class the most. In this work, we prove lower bounds on the performance of this greedy approach for small $k$. Specifically, we show that for $k = 1$, the algorithm does not improve upon the halving-based bound of $O(\log(|\mathcal{C}|))$. Furthermore, for $k = 2$, we complement the upper bound of $O\left(\log(\log(|\mathcal{C}|))\right)$ from [Moran, Shpilka, Wigderson, and Yuhudayoff; FOCS 2015] with a matching lower bound. Most consequentially, our lower bound extends up to $k \le \lceil c d \rceil$ for small constant $c>0$: suggesting that studying higher-order interactions may be necessary to resolve the conjecture that $\operatorname{TS}_{\min} = O(d)$.